
ETMS System Design Document
Version 5.8

7-1

Section 7

External Communications Functions

The External Communications functions provide an interface between the Enhanced Traffic
Management System (ETMS) and the data providers and receivers that do not implement the
internal ETMS protocol. The External Communications functions maintain the appropriate
protocols and translations necessary to interchange data between the ETMS and the systems
external to the ETMS.

7.1 The External Communication Interface

The External Communications interfaces, the point of demarcation, and the type of
information that is transferred are listed below. For simplicity the translation of external
message types into NAS message types are not included; only the resultant messages are
given.

7.1.1 HOST Interface

ETMS receives the full NAS collection of data from each of the 20 HOST processors. The
ETMS sends Control Time messages to specific HOST processors. The demarcation point is
the ETMS file server co-located at each of the ARTCCs.

7.1.2 OCS Interface

ETMS receives the entire NAS collection of data with the exception of TZ messages from the
Alaskan OCS processor. This is a receive only interface. The demarcation point is the ETMS
file server co-located at the Alaskan ARTCC.

7.1.3 EARTS Interface

ETMS receives TZ messages from the Alaskan EARTS processor. This is a receive only
interface. The demarcation point is the ETMS file server co-located at the Alaskan ARTCC.

7.1.4 ARTS III E Interface

ETMS receives TZ messages from the Alaskan EARTS processor. This is a receive only
interface. The demarcation point is the ETMS file server co-located at selected TRACON
facilities.

ETMS System Design Document
Version 5.8

7-2

7.1.5 ODAPS Interface

ETMS receives the entire NAS collection of data with the exception of TZ messages from the
Alaskan OCS processor. This is a receive only interface. The demarcation point is the ETMS
file server co-located at the New York and Oakland ARTCCs.

7.1.6 Canadian Interface

ETMS receives NAS AF/FZ/DZ/RZ/TZ data from each of the seven Canadian processing
systems. This is a receive only interface. The demarcation point is the ETMS file server
co-located at each Canadian Center.

7.1.7 London Interface

ETMS receives NAS FZ/DZ/TZ data from London Center. This is a receive only interface.
The demarcation point is the ETMS file server co-located at London Center.

7.1.8 OAG Interface

ETMS receives weekly updates of scheduled flight plans (ETMS FS messages) from the
OAG. This is a receive only interface. The demarcation point is the ETMS hub site facility.

7.1.9 ARINC Interface

ETMS disseminates flow control messages to the airlines through the ARINC network. The
airlines also can send substitute/insert messages to the ETMS. The ETMS then sends SI
Responses back as needed. The demarcation point is the ETMS hub site facility.

7.1.10 NADIN Interface

ETMS disseminates flow control messages to national and international flow control facilities
through the NADIN network. The ETMS also receives various messages of note through this
interface. The demarcation point is the ETMS hub site facility.

7.1.11 OMP Interface

ETMS translates VHF position reports from ARINC into ETMS TO messages. This is a
receive only interface. The demarcation point is the ETMS hub site facility.

7.1.12 Weather Interface

ETMS System Design Document
Version 5.8

7-3

ETMS receives raw weather data from the WSI Satellite Distribution Network. This is a
receive only interface. The demarcation point is the ETMS hub site. ETMS translates the data
into weather products and distributes the products to each ETMS facility.

7.1.13 ATA Interface

ETMS transmits a filtered composite of NAS and ETMS value added data to the ATA
distribution system. This is a transmit only system. The demarcation point is the ATA
network interface at the ETMS hub site facility.

7.1.14 ASDI Interface

ETMS transmits a filtered composite of NAS and ETMS value added data to authorized and
registered airline industry related vendors. This is a transmit only system. The demarcation
point is the ASDI/CDM network firewall at the ETMS hub site facility.

7.2 NAS Server

Purpose

The NAS Server is the front end for the NAS Driver. It receives messages from the driver and
passes the messages to the appropriate clients. It also forwards messages from clients and/or
com_server mailboxes to the HOST. All messages from the NAS network are written to a log
file (i.e., //dsk04/traffic/nas_msgs.961014170002). A new file is opened once an hour.

Input

Runtime Parameters. There are two optional arguments to the Nas.server. The first
argument is the name of the adaptation file. If none is given or it is invalid, the filename
defaults to /<etms5>/nas/config/nas.server.config.

The second optional argument specifies how long to age a buffer of NAS messages before
shipping it to the ETMS. The values can range from 05 to 60 seconds. The recommended
interval, which is the default, is 20 seconds.

Statistical Requests.

Adaptation File Format. The first section (or line) of an adaptation file contains ARTCC
code. Each data source is assigned a one-character center code. ???? Note that any blank line
or any line beginning with # is ignored.

The second section (or line) contains the server mailbox name. This must match the name
specified in the Driver configuration file. A typical line is:

ETMS System Design Document
Version 5.8

7-4

/mbx/nas.mbx

The third section (or line) contains the shared region name. Short TZ and all DZ messages are
written into this shared region. This allows other programs to read this data in real time. The
typical line reads:

mbx/nas.region

The fourth section contains the addresses of processes to receive the buffered NAS data.
There can be up to 16 entries in this and the next section. This address table must be
terminated with a line beginning with the word END.

The fifth and final section is a list of addresses to be notified of various noteworthy events
(users to be notified), HOST up/Down, messages timed out, messages being rejected. There
can be up to 16 lines of addresses (counting the previous section) with one address per line.
The format of the address is as follows:

(aaa.bbb.ccc), where aaa is site, bbb is node, and ccc is class

For example, (6.4095.9) causes errors to be sent to all occurrences of class nine on site six
(all Net.mail on $vntsca).

Output

Status Window. Nas.server also maintains a status window on the screen. This window
shows the current count of messages sent or received from the HOST and the status of the
interface.

Hourly Log Files. All messages to or from Nas.server, with appropriate control information,
are written into files which are created for each hour. A sample filename is
//dsk04/traffic/nas_msgs.960809190000.

Processing

The Server program responds to statistics requests from Net.mail. A Net.mail S0 request
returns the large statistics list. This S0 report lists the driver connection, its state, message
counts and their timing. A Net.mail S1 request causes a poll to be sent to the driver. The
information received from the driver is reformatted by Nas.server into a simple table. A
Net.mail S2 request returns the clients registered to Server and the adaptation table of
addresses to client connection types. A Net.mail S3 request returns the list of messages
queued to the driver.

7.2.1 Nas Server Routines and Procedures

ETMS System Design Document
Version 5.8

7-5

Procedure add_to_nas_queue stores messages destined for the HOST/EARTS prior to their
shipment. These messages currently consist of CT messages destined for the HOST
processor.

Procedure check_svr_mbox reads the mailbox that is primarily used for data interchange
between the driver and Nas.server. A connection request (mbx_$channel_open_mt) causes
mbox_process_open to be called. A disconnect notification (mbx_$eof_mt) causes the
activation of mbox_process_open. All data messages are sent to the svr_process procedure.
Note that mailbox channels stop working when 232 bytes of data are transferred. This
procedure checks for this and unilaterally disconnects any client whose message traffic
exceeds 0x37777777 bytes of data.

Procedure check_timer performs time oriented activities. If a buffer of messages from the
HOST has aged beyond the threshold, this routine calls etms_hub_send to transfer the data. If
the NOOP timeout has occurred, each mailbox client is sent a NOOP message.

Procedure check_truncate_file rewinds a file if it becomes larger than 65KB.

Procedure clear_chans closes and deallocates all active mailbox channels. This occurs on a
reconfigure and on program termination.

Procedure clear_create_nas_queues deletes and then recreates the permanent queue of
messages destined for the HOST. The filename is /traffic/nas_queue_file. It is a permanent
file, and as such its contents can survive a program termination and restart. This routine
creates the new queue and configures its control information.

Procedure clear_hidden_line erases information hidden below the horizon of the status
window. This information is more complete than what is displayed but is used only for
debugging purposes.

Procedure compare_strings compares two strings arithmetically. It returns a 0 if they match,
a -1 if string one is less than string two, and +1 otherwise.

Procedure create_log_file creates the hourly transaction file. These files (i.e.,
//dsk04/traffic/nas_msgs.961014170002) contain a tracing of all message transfers between
the server and the driver.

Procedure create_nas_queue reloads the queue file of messages destined for the HOST. This
is called at initialization. If there is inconsistent control information in the file,
clear_create_nas_queues is called to recreate the file.

Procedure create_window creates the status window. This contains the current status of
Nas.server as well as message counts of traffic through the program.

Procedure display_error appends user defined text onto operating system error messages and
writes the consolidated output to both stream_$stdout and into the trace file.

ETMS System Design Document
Version 5.8

7-6

Procedure display_nas_msg decodes a packetized NAS message from the driver.

Procedure display_nas_state writes the current NAS state into the status window.

Procedure display_net_error appends user defined text to network addressing error messages
and writes the consolidated output to both stream_$stdout and into the trace file.

Procedure etms_hub_add buffers messages from the HOST/EARTS prior to sending them to
the ETMS system. If there are more than 6,000 bytes in the buffer, etms_hub_send is called
to transmit the buffer. Otherwise, the four-byte timestamp, the one-byte center code, and
then the received message are added onto the buffer.

Procedure etms_hub_init sets up a buffer to the ETMS. It sets the eight-byte password, the
four-byte timestamp, the center code, the SQ message code, and the four ASCII digit
sequence number. The buffer creation time is also reset.

Procedure etms_hub_send sends the ETMS buffer to all specified addresses, those that were
read from the adaptation file at initialization. There can be up to eight destination addresses per
message and the appropriate number of messages are sent to notify all the recipients. After
sending etms_hub_init is called to reinitialize the buffer.

Procedure extract_sequence circumvents PASCAL type checking and extracts the message
sequence number from a binary record.

Procedure format_window_header clears the display window and displays the appropriate
information about the current NAS Server state.

Procedure increment_message_counts determines the index to the counters based upon
message type. The appropriate counters are then augmented.

Procedure initialize performs the steps necessary to configure Nas.server. It creates all the
mailbox and control tables and creates the server mailbox. While performing these operations,
it calls the following initialization routines:

• initialize_database

• make_region

• create_nas_queue

• net_open

• etms_hub_init

• create_window

Procedure initialize_database creates the necessary directories and reads the adaptation file.
Initialize_database begins by calling get_etms_path to determine the version 5 root directory,

ETMS System Design Document
Version 5.8

7-7

currently /etms5. If it fails, the program terminates. This procedure then creates the /sio_files
and /<etms5>/nas/trace directories and subsequently creates the trace file /<etms5>/nas/trace
/nas.server. This procedure then opens the adaptation file (specified by program argument
one) or the default /<etms5>/nas/config/nas.server.config.

This procedure reads the adaptation file and obtains the center code, the server mailbox name,
the shared region name for TZ messages, and all the addresses that will receive messages
from this program. The format of this file is specified in a separate section of this document.

Procedure kill_nas_driver terminates the process named nas.driver. This routine is called
when a message times out during transmission to the HOST. There is a check to see that the
driver is not terminated too frequently. Nodescan then restarts the driver.

Procedure log_outbound_message writes information into the hourly log file.

Procedure make_region creates a shared memory region for TZ messages. Nas.server writes
them into the region; anyone can read them.

Procedure mbox_process_eof handles a mailbox disconnect message. This procedure releases
the mailbox resources and clears all the tables that reflected the connection.

Procedure mbox_process_open accepts mailbox connections. The typical conection is the
driver. If the connection type is not NAS, DISPLAY or PRINTER, the connection is refused.
Otherwise the channel data is configured, and an accept message is sent to the mailbox.

Procedure net_open opens the connection to the network addressing message switching
system. The class is NAS.

Procedure net_poll looks for messages from the network addressing message switching
system. If it receives a fatal connection error, it closes and reopens the connection.
Otherwise, all valid messages are sent to the net_process_message procedure. Returned
messages are logged to the screen and into the trace file. All messages are read on each
procedure call.

Procedure net_process_message determines the message type and performs the appropriate
action. The following table illustrates the processing:

• net$_t_give_status_lev_1 causes a call to process_s1

• net$_t_give_status_lev_2 causes a call to process_s2

• net$_t_give_status_lev_3 causes a call to process_s3

• all other stat requests cause a call to process_stats

• net$_t_reconfigure causes a call to initialize_database, with
acknowledgment to the requestor.

ETMS System Design Document
Version 5.8

7-8

• ct_output_message_code (16435) causes a message to be sent to the
driver (this is a CT message).

Procedure process is a simple loop which is gated by event counters. On each cycle it checks
to see whether a new hourly file should be created, checks for sending and receving timeouts,
and calls check_timer, check_svr_mbox, net_poll, and send_queue.

Procedure Process_driver_stats handles the statistical response from the driver. Earlier, one or
more users sent an S1 command to the server. The server then sends a statistical request to
the driver. The response is encoded into an ASCII message, framed for ETMS transmission,
and sent to all users who are awaiting the S1 response.

Procedure Process_driver_status processes status type messages from the driver. In most
cases these are unsolicited responses. The following table lists the various status messages
and the processing that results:

• ipc_$status_ok signifies that the message was sent to the HOST. This
results in a call to Process_message_sent and if there are queued
messages, a call is also made to send_queue.

• pc_$status_failed signifies that the message was refused by the HOST.
This results in a call to Process_message_aborted and if there are queued
messages, a call is also made to send_queue.

• ipc_$status_ready signifies that the HOST circuit is now available. All
users are notified and send_queue is called if nothing is outstanding to the
driver.

• ipc_$status_alive signifies that the driver is now operational. Users are
notified and send_queue is called if nothing is outstanding to the driver.

• ipc_$status_notready signifies that the driver is in a not ready state. Users
are notified by a call to send_to_users.

• ipc_$status_noline signifies that there is no HOST connection. Users are
notified by a call to send_to_suers.

• ipc_$status_msgrejected signifies that HOST rejected the message. This
results in a call to Process_message_aborted and if there are queued
messages, a call is also made to send_queue.

• ipc_$status_noresponse signifies that the HOST network did not send a
response to the last message. This results in a call to
Process_message_aborted and if there are queued messages, a call is also
made to send_queue.

ETMS System Design Document
Version 5.8

7-9

• ipc_$status_dcpfail signifies that the DCP microcode failed. This means
that the driver needs to be reloaded. Users are notified by a call to
send_to_users.

• Any other status message is unexpected; it will be logged and otherwise
ignored.

Procedure Process_message_aborted handles the case where the connected network does not
accept the sent message (the format was wrong, the line was down, the line was not turned
around, etc.). If there is no outstanding message to the driver, there is no processing.
Otherwise, the queued message is updated. If the retry count has not been exceeded, this
routine does nothing. Otherwise, the message is removed from the queue, users are notified
by a send_mail_notice and the events are logged into the hourly file.

Procedure Process_message_sent handles the case where a message is successfully
transferred to the HOST. It removes the message from the queue and logs the event into the
hourly file.

Procedure Process_nas_rcv_timeout handles the case where no data is being received for a
while. If there is no error window currently displayed, it calls create_error_window to make
one. Updates are made to the error window once a minute; if a minute has not passed,
nothing is done. Otherwise, the window receives an updated no input NAS data for xx
minutes message, and a copy of the message is sent to all users listed in the adaptation file.

Procedure Process_nas_xmt_timeout handles the case of no acknowledgment from the driver
on a message to NAS. There is a safety check to see that the driver has a message; if it does
not, nothing is done. Otherwise, an entry is made into the hourly file, a message is sent to all
users listed in the adaptation file, and kill_nas_driver is called to terminate the driver. This
covers the case where a driver has problems.

Procedure Process_s1 processes the user request for driver statistics; the user entered an s1
command to Net.mail. This procedure adds the user's address onto a pending queue and
sends a statistics request to the driver. When the response goes back later, it is processed by
process_driver_status, which formats and sends the ASCII response back to the requesting
Net.mail.

Procedure Process_s2 processes the user request for the message distribution information; the
user entered an s2 command to Net.mail. This routine formats the ASCII report of the people
to receive system notices, the address mapping table, the process registration list, and the
auto distribution list. The appropriate statistical information is also recorded.

Procedure Process_s3 processes the user request for the display of all pending messages to
HOST; the user entered an s3 command to Net.mail. The message queue is traversed and
appropriate information is extracted and formatted into ASCII messages which are then sent
to the requesting Net.mail process.

ETMS System Design Document
Version 5.8

7-10

Procedure process_stats processes the user request for statistics; the user entered an s0
command to Net.mail. This procedure formats the appropriate statistics and returns the
ASCII report to the user.

Procedure record_status_change writes driver status changes to the hourly log files as well as
into the display window.

Procedure region_ftm_add adds the DZ and TZ (if the TZ is smaller than 32 bytes) into the
shared region.

Procedure send_buffer sends messages to a specified server mailbox channel.

Procedure send_ok_to_driver sends an acknowledgment that the last message was received
properly to the driver.

Procedure send_queue sends the first message on the output queue to the driver. If there
already is a message outstanding to the driver, nothing on the queue, no driver connected or if
the Arinc network is down, this routine does nothing.

Procedure send_to_clients distributes noteworthy event messages to all users specified in the
adaptation file.

Procedure send_to_driver begins by checking to see if the message is the type to be queued
(i.e., an outbound message) and, if so, calls add_to_nas_queue to queue it. If there already is
a message outstanding to the driver and the message is queued; return. Messages that are not
eligible to be queued are control type messages and should be sent immediately.

Procedure svr_Process processes the mailbox that the server created. At this point in time, the
only client on this mailbox should be the driver. The following processing is performed on
messages from the driver channel of the mailbox:

• Record the time of receipt and clear any no messages received flags, and
call send_to_users to state that data is again being received.

• If the message from the driver is of type ipc_$stats, call
process_driver_stats.

• If the message from the driver is of type ipc_$msg, send an
acknowledgment to the driver by calling send_ok_to_driver.

• If the message from the driver is of type ipc_$status, call
process_driver_status.

• Any other message type is displayed, then ignored.

The message type of ipc_$msg is further processed by logging it into the hourly file and if a
client is connected to the mailbox, the message is sent to the process. The processing is
completed by calling reformat_nas_msg and etms_hub_add to buffer the data.

ETMS System Design Document
Version 5.8

7-11

Input messages from channels that are not the driver are scanned and if the first two bytes
are a valid NAS message code (for example, CT), the message is sent to the driver by calling
send_to_driver.

Procedure update_screen_count increments the counters for messages read from or written
to the driver. This information is displayed in the status window.

Procedure write_header writes uniform headers into the hourly files before any information is
written.

7.3 NAS Collator Function

Purpose

The NAS Collator (NASC) consists of one process (see Figure 7-1). NASC receives all NAS
messages from the NAS.server, ARTS.server, London, and DOTS. NASC validates the
format of each incoming message and collates the messages. NASC also filters the data
(fields 3 and 11) if the filter command is used when invoking NASC or if the filter option is
specified in the configuration file. NASC then sends the data to the specified destinations in
the configuration file.

LONDON NAS Server DOTS ARTS Server

NASC

NAS Distributor Process #1 Process #2

NAS Data NAS Data NAS Data

Figure 7-1. Data Flow of the NASC Process

Execution Control

ETMS System Design Document
Version 5.8

7-12

NASC is a continuous process that is invoked by the run-time support process called
Nodescan.

Input

NASC expects the name of the configuration file as its first argument for initialization. If no
configuration file is provided at startup, the software defaults to:

/etms5/nas/config/nasc.config

There are two parts to the configuration file, the destination address list and the site list table.

The destination address list is a list of addresses used to send out messages from NASC. The
addresses in the list follow the conventions for Network Addressing addresses. Following the
address, a switch to send the data filtered or unfiltered is included; if omitted, the default for
filtering is as specified in the invocation of the NASC. Note that the address list ends with a
terminator line, consisting of the word END. The format of each entry in the list is:

(<site id>, <node id>, <class>) <filter>

There can be a maximum of sixteen destination addresses with a filtered or unfiltered option
specified on each. The filtered or unfiltered option can be omitted from the configuration file,
in which case the filter command line option is used. If neither the configuration file or the
command line have a filter/unfiltered option used, the default of unfiltered is used.

The format of the site list configuration file is as shown below:

<NAS symbol > <ETMS site address> < ETMS site ID> <ASCII site name>

NASC expects to receive data from these sites. The ASCII site name is included in the
configuration file for informational purposes within the configuration file; it is not used by
NASC.

NASC accepts up to two arguments at initialization. The format to invoke NASC is:

<NASC executable> <NASC configuration file> <filter>

The second argument, which is the filter switch, is optional. This switch filters data,
specifically field 3 and field 11 in the data messages. The destination addresses in the
configuration file can also specify a filter option. The relationship between the command-line
filter switch and the switch(es) in the configuration file is that the command-line filter sets the
default mode, but the filter/unfilter value on the configuration file line will override the default
for that site. If filter is not specified on the command line, the default is unfiltered.

Output

ETMS System Design Document
Version 5.8

7-13

NASC forwards data either filtered or unfiltered to its list of destination addresses.

Processing

The NASC is a process that receives NAS data from the NAS.server, ARTS.server, London,
and DOTS. The data flow of messages is shown in Figure 7-1. NASC forwards the data as
shown in the above figure to its specified destination addresses. The destination process is
most often a NAS.dist on a particular string, but it can be any process.

NASC validates the format of the data and filters the data if specified from the command line
and/or the configuration file. The valid format for message data consists of an eight-byte
security code, a four-byte time stamp, a one-byte center code, then the message. The first
message in each buffer must be an SQ, followed by a four-digit sequence number. The
filtering process removes asterisks and extra spaces from the messages. The filtering
process also modifies the contents of field 3 and field 11 of the message data, per NRP rules.

NASC collates the data and responds to Net.mail stats level 0 command (s0) requests. An s0
request gives information on the number of messages received and sent, and a breakout of the
types of message received from each of the sites in the configuration file site list. There are
two statistical tables that are kept by NASC which are displayed. The first table is called
Messages this Hour. It displays the number of XX (unknown messages, e.g., SQ and TO
messages), TZ, AF, AZ, DZ, FZ, RZ, UZ, and BZ messages that were received per site within
the last hour of operation. The second table is called Total Messages. This displays the same
information as the first table, except that it shows all of the messages that have been received
since the invocation of the NASC process. In addition, this table also displays the number of
missed blocks of data, the last block of data received, the number of times that the remote
site restarted and the number of seconds since the last block of data was received per site.
The SQ also provides information about the name of the adaptation file, number of unfiltered
addresses, and number of filtered addresses. Stats level s1 through s9 are not supported by
NASC.

NASC supports a reconfiguration command through Net.mail. The format of the command
is:

<reconfigure> < address of the process> <name of the configuration file>

Error Conditions and Handling

The NASC program displays error messages under the following circumstances:

• Unable to open adaptation file <adaptation file> - This error message is
displayed in the trace file when NASC is invoked without specifying the
configuration file, its mandatory argument. The program aborts if it is
unable to open the adaptation file.

ETMS System Design Document
Version 5.8

7-14

• There is no directory structure specified - This error message is displayed
in the NASC process window when the etms5 directory is missing.

• Unable to open adaptation file<adaptation file>- This error message is also
displayed in the trace file when the configuration file does not exist or
when it is missing from the ETMS5 tree.

• Reconfigure command sent to <NASC process> - This message is
displayed when a reconfiguration is attempted using an invalid
configuration file. Since the reconfiguration cannot be successfully
completed, a confirmation message is never displayed.

• IOS_GET_ERROR - This error message is displayed if NASC is unable to
read a line in the adaptation file.

• Invalid termination of address field. A line with `end' is the terminator -
This error is displayed if the addresses specified in the configuration file
are not terminated with END .

• Port is filled Msg lost - This error message is displayed in the trace file
when a ERR_NET_T_PORT_FILLED error is generated.

• ***Error in adaptation , line<line in file> - first element must be one
character - This message gets printed to the trace file if the first element
in the site list table is invalid.

• ***Error in adaptation , line<line in file> - second element must be three
characters - This message is printed to the trace file if the second element
in the site list table is invalid.

• ***Error in adaptation , line<line in file> - third element must be numeric -
This message is printed to the trace file if the third element in the site list
table is invalid.

7.4 NAS Distributor Function

Purpose

Nas.dist accepts data from various data providers and distributes the data to registered clients
as shown in Figure 7-2.

ETMS System Design Document
Version 5.8

7-15

FBD

Parser

NAS Server

Q_Driver

NAS Distributor

RT-Relay

ATA

NAS
Data

FS, RS
Data

FZ, TZ, DZ
Data TO Data

Canadian
Data

RT
Data

NASC SDB LONDON DOTS CAN Server

Figure 7-2. Data Flow of the NAS Distributor Process

Execution Control

Nas.dist is a continuous process that is invoked by the run-time support process called
Nodescan. The format to invoke Nas.dist is:

nas.dist <nas.dist configuration file>

Input

Nas.dist requires the name of the configuration file as its only argument for initialization. The
configuration file contains the list of acceptable clients to Nas.dist. The format of the
configuration file is:

<Site> <Class> < Optional field for filter switch>

Site refers to the site on which the client process will be running, and Class refers to the class
of the process. If a process tries to register to Nas.dist, and if it is not in the configuration
file, the registration will be rejected.

Nas.dist receives data inputs from various data providers as listed in Table 7-1.

ETMS System Design Document
Version 5.8

7-16

Table 7-1. Nas.dist Data Providers

Message Type Description Data Provider
NAS Contains DZ,FZ,AF,AZ,BZ, UZ

and RZ messages
NDA,NASC

FS/RS Flight scheduling messages SDB
TO Oceanic Tracking Report DOTS
RT Route Message RT-Relay
NAS Flight position and flight plan

data for Canadian flights
Can.Server

NAS Contains DZ, FZ and TZ data
only

London

Note that Nas.dist processing is determined by the class of the sender of the message. For
example, if the data provider was DOTS, Nas.dist assumes that all the data coming in is of
type tomsgs.

Output

Nas.dist formats the data and ships the appropriate data to registered clients. The registered
clients can request any of several services from Nas.dist as listed in Table 7-2.

Table 7-2. Nas.dist Services

Valid Services Description
allmsgs All Messages
no-rte All messages except rt messages
fsmsgs FS-RS messages
tomsgs TO messages
nasmsg NAS messages
rtmsgs RT messages
nortfs no RT, FS or RS messages

Nas.dist writes the data that is sent out to a raw file. A raw file is a time-stamped log file
created every hour, and the raw data (data before any validation or formatting) read by
Nas.dist is written into it.

Processing

Nas Distributor is a process that receives data from various providers. Nas Distributor reads
the data shown in Figure 7-2. It requires that the message has 8 bytes of security appended to
the beginning of the message.

ETMS System Design Document
Version 5.8

7-17

As seen above, Nas.dist receives various data. It receives this data and formats it before
sending it to the clients. Nas.dist validates the time stamps of the data using the following
rules:

(1) If a message is an AZ and time is more than +/- 30 minutes old, Nas.dist
corrects time in the message by setting it to current time.

(2) If a message is a TZ and time is more than +/- 10 minutes old, Nas.dist drops
the message.

(3) If time is more than +/- 7 minutes old for all other messages, Nas.dist corrects
time in the message by setting it to current time.

If the filter switch is set in the configuration file, Nas.dist filters military flights from the data
sent to the registered clients.

Nas.Dist responds to stats level S0, S1, and S2, where S0 and S1 requests return the same
information. The S0 and S1 conveys information on the number of bytes sent, bytes received,
and bytes rejected. It also provides information about the name of the adaptation file, number
of registered clients, and number of filtered clients. S2 gives information about the contents
of the adaptation file, number of messages with validated time stamps, and number of
messages lost due to bad time. Stats level S3 through S9 are not supported by Nas.dist.

Nas.dist supports the reconfiguration command through Net.mail. The format of the
command is:

<reconfigure> < address of the process> <name of the configuration file>

Error Conditions and Handling

Nas.dist program displays error messages under the following circumstances:

• NO ADAPTATION FILE SPECIFIED! - ERR_PGM_BADARGS - This
error message is displayed when Nas.dist is invoked without specifying
the configuration file, its mandatory argument.

• Using /ETMSPATH file, cannot use /etms5 for ETMS directory. COULD
NOT OPEN TRACE FILE OPENING ADAPTATION FILE! -
ERR_FILE_NOTOPENDATE = 01/06/1997 TIME = 16:21:12
ERROR ERR_FILE_NOTOPEN - This error message is displayed
when the ETMS directory is missing.

• COULD NOT OPEN TRACE FILE - This error message is displayed
when trace directory is missing.

ETMS System Design Document
Version 5.8

7-18

• OPENING ADAPTATION FILE! - ERR_FILE_NOTOPEN - This error
message is displayed when the configuration file does not exist or when it
is missing from the ETMS tree.

• COULD NOT OPEN CONFIGURATION FILE <filename> - This error
message is displayed in the window where Net.mail is running, when user
tries to reconfigure Nas.dist with a non-existent configuration file.

• REJECTING REGISTRATION: INVALID SERVICE COUNT - This
error message is displayed when the service count exceeds
NET_MAX_SERVICE_NEEDED

• REJECTING REGISTRATION: INVALID SERVICE - This error
message is displayed when the service = NET_T_MSG_REG BAD

• INVALID ADDRESS FOR CLIENT REJECTING REGISTRATION:
INVALID ADDRESS - This error message is displayed when the client is
not found in the client table

• INVALID MSG CODE - This error message is displayed when Nas.dist
receives a bad message code from the user

• CURRENT TIME<time> AZ WITH BAD TIME:<time> - When timestamp
on an AZ message type is later than current time or over 30 minutes old,
this message is logged in the trace file.

• CURRENT TIME:<time>WITH BAD TIME:<time> - When timestamp on
a TZ message type is 10 minutes off, Nas.dist discards this message and
this is logged into the trace file.

• CURRENT TIME:<time>MESSAGE TYPE:<message type> WITH BAD
TIME: <time> - For all other message types which are +/- 7 minutes off
of the current time, is reset to current time and this is logged into the
trace file.

• COULD NOT CREATE RAW FILE - This message is displayed when
Nas.dist fails to create a raw file

• Error trying to create traffic file dir - This message is displayed when
Nas.dist fails to create traffic file directory

• Error trying to access traffic file dir - This message is displayed when
Nas.dist fails to access traffic file directory

• MESSAGE FROM <message type> DID NOT MATCH SECURITY -
This message is displayed when the first 8 bytes of the message read does
not match the 8 bytes of security.

ETMS System Design Document
Version 5.8

7-19

• MESSAGE FROM UNACCEPTABLE CLASS - This message is displayed
when Nas.dist reads data from a process with a class not defined in its
configuration file.

• ERROR : PREVENTED SENDING MSG - This error message is
displayed when Nas.dist fails to send data to the registered clients because
of port filled conditions.

• INVALID NAS MSG SIZE - This error message is displayed when
Nas.dist does not find 8 bytes (4 of byte count, 4 of time) of control
information and at least one line of data (assume 10 bytes) after 8 bytes of
security inside the buffer containing data to be uncompressed.

• INVALID BYTE COUNT - This message is displayed when the
byte_count of data in the buffer is less than 10 or when it is greater than
NET_MAX_DATA_BYTES_IN_PACKET

7.5 Offshore Message Processor

Purpose

The Offshore Message Processor (OMP) is the successor to the original Dynamic Oceanic
Tracking System (DOTS) that was used previously by the ETMS. The OMP was developed
by following the processing rules as specified by the ODAPS system requirements.

The OMP is responsible for obtaining international position reports from the ARINC network
interface and translating them into the ETMS TO oceanic position reports.

Design Issue

The OMP is open system compliant. If the OMP must connect to an AEGIS compatible
node.sw, the interim bridge process must be used.

Input

The OMP uses three input files. The first file is its configuration file, the second file is the fix
to latitude/longitude mapping table, and the third is the file of parsing tokens.

Sample Adaptation File. A sample adaptation file is as follows:
/etms5/dots/config/dots.config

Uncomment if new map file
NEW

ETMS System Design Document
Version 5.8

7-20

distribution list - typically all nas.dist addresses
it lists which addresses will receive messages from this program
#
remaining valid lines (up to 16) : data destination list; up to 16 addresses
(xx.xx.xx) format - note no invc_num or subaddress
(site.node.class) in decimal digits
e.g. (6.5.39) the () and . are required !
#

(6.4095.82)
(7.4095.82)
(8.4095.82)
(10.4095.82)
(109.4095.82)

New/old map file

Distribution list

Fix to lat/lon table.
/etms5/dots/fix.dat

ABARR 411130N 735906W N
ABBN 272306S 1530706E N # From enroute supplement
ABBYS 402823N 745935W N
ABCOL 470942N 1614012E N -MVAR 3W # From DACS 6/25/92
ABE 404335N 752718W N
ABETS 360500N 1442500E N # From DACS 6/25/92
ABH 351051N 1382333E N
ABNER 343607N 1354208W N # From DACS 6/25/92
ABR 452503N 982206W N
ABSOL 271814N 1505911W N # From DACS 6/25/92
ABULO 353800N 75112W N # From Jeppesen AT1
ABZUG 392545N 755845W N
ACERT 172006N 1464430E N # From LI 4-4-91
ACK 411654N 700138W N
ACK 541000N 100000W N # Gander messages sometimes misspell ACKIL as ACK
ACKER 555012N 690506W N # Canadian HAC 4
ACKIL 541000N 100000W N # From John Paeper
ACLIF 395100N 750000W N
ACMEE 220148N 750018W N # From DACS 6/25/92
ACO 410628N 811206W N
ACONT 401548N 1494906E N # From DACS 6/25/92
ACORA 134000N 673000W N # From DACS 6/25/92
ACOVE 421405N 740156W N
ACR 351721N 1411219E N
ACRAM 420239N 734320W N
ACRON 133720N 1430144E N # From DACS 6/25/92

ETMS System Design Document
Version 5.8

7-21

Parsing tokens file.
/etms5/dots/dots_smi

AEP 01 POSITION WITH WEATHER
AGM 07 MISCELLANEOUS AIR/GROUND MESSAGE
AID 36 AIRBORNE INSTRUMENTATION DATA SYSTEM
ALR 05 ALERTING MESSAGE
ARI 40 FUEL/CLOSE-OUT REPORT
ARR 04 ARRIVAL
AVR 19 AIR CREW ORIGINATED VOICE REQUEST
CHO 15 CHANGEOVER OR IN-RANGE REPORT
CLK 20 AIRBORNE GMT CLOCK RESET
CLR 08 FLIGHT CLEARANCE
CMD 26 ACARS AVIONICS MEMORY LOAD OR DIAGNOSTIC FUNCTION
CNL 13 CANCELLATION OF FLIGHT
CPL 10 CURRENT FLIGHT PLAN
DEP 03 DEPARTURE
DFD 35 ACARS DIGITAL FLIGHT DATA ACQUISITION UNIT
DIV 41 AIRCRAFT DIVERSION MESSAGE
DLA 12 FLIGHT DELAY
ENG 38 AIRCRAFT ENGINE DATA
ETA 17 ESTIMATED TIME OF ARRIVAL
ETR 32 AIRCREW INITIATED REVISION TO PREVIOUSLY ADVISED ESTIMATED TIME OF ARRIVAL

FAM 14 FLIGHT MOVEMENT ADVISORY MESSAGE
FML 33 ACARS FLIGHT MANAGEMENT COMPUTER - LEFT
FMR 34 ACARS FLIGHT MANAGEMENT COMPUTER - RIGHT
FPL 09 FILED FLIGHT PLAN
FPR 24 AIRCRAFT ORIGINATED REQUEST FOR FLIGHT PLAN UPDATE VIA ACARS
FPU 23 GROUND ORIGINATED FLIGHT PLAN UPDATE TO AIRCRAFT VIA ACARS
GVR 18 GROUND ORIGINATED VOICE REQUEST
HJK 39 AIRCRAFT HIJACKED
LIF 22 GROUND ORIGINATED AIRCRAFT LOAD INFORMATION
MVT 16 FLIGHT MOVEMENT
OAT 21 AIRBORNE OPTIONAL AUXILIARY DATA TERMINAL/DEVICE
PDM 42 POSSIBLE DUPLICATE MESSAGE
POS 02 POSITION WITHOUT WEATHER
PSN 10 AIRCREW INITIATED POSITION REPORT WITH/WITHOUT WEATHER INFORMATION
RDO 25 ACARS AVIONICS MEMORY READOUT
RTN 29 ACARS EQUIPPED AIRCRAFT RETURN TO GATE
SPL 11 SUPPLEMENTAL FLIGHT PLAN
SVC 37 ACARS COMMUNICATIONS SERVICE MESSAGE
THR 31 AIR CREW INITIATED OR AUTO SENSED TAKE OFF THRUST
TIS 06 AIRPORT TERMINAL INFORMATION SERVICE
WXO 28 WEATHER OBSERVATION REPORT
WXR 27 WEATHER OBSERVATION REQUEST

ETMS System Design Document
Version 5.8

7-22

Output

The OMP does not display any windows or produce log files. The OMP responds to the
ETMS Net.mail S0 command and provides a statistical report.

TO buffers

The OMP ships the buffers of TO messages to all specified applications when either the
buffer ages too much or the buffer becomes full.

Statistical Reports

The OMP formats and ships a status report to users who request them via the Net.mail S0
command.

Processing

The OMP registers to the ARINC process of the ETMS to receive all messages read from the
ARINC network. The OMP then examines each message. If the message is a position report,
the message is parsed. The parsed message is then converted into an ETMS TO position
report, buffered and when either the buffer ages sufficiently or becomes full, the OMP
process forwards the buffer to specified applications. The OMP reads from its configuration
file, at initialization, a list of ETMS application addresses and forwards each buffer to all
addresses. The OMP is composed of one processing module, DOTSTO.

The OMP is composed of three phases: initialization, processing, and termination.

Initialization. The initialization phase is concerned with reading the three configuration files
and configuring the OMP process. This includes loading the fix table and the token table into
memory, connecting to the ETMS message switching system (node.sw), and registering to
the ARINC process for the position reports.

Processing. The processing phase is one large loop. Refer to the PROCESS procedure
below for further details. The processing phase maintains the registration to the ARINC
process, reads ARINC position reports, translates the reports into TO messages, buffers the
messages, and ships the buffers to all specified recipients.

Termination. The termination phase is concerned with releasing all resources. This includes
closing all files, unregistering to the ARINC process, closing the ETMS message switching
connection, and terminating in a safe way to facilitate the next invocation of the process.

Error Conditions and Handling

The OMP maintains a trace log. Various exceptional events are written to this file. The file is
constrained to 65K bytes. The file is cleared and written again whenever 65K bytes are in the
trace file.

ETMS System Design Document
Version 5.8

7-23

The OMP treats the following syndromes as fatal during initialization:

• There is no ETMS path structure (pgm_get_etms_path failed). This
implies that the directory structure is unknown.

• The first argument (adaptation file) is missing.

The following errors are handled transparently:

• inability to connect to node.sw

• configuration file missing

• fix file missing

• token file missing

• loss of ARINC data (registration loss, disconnect from node.sw etc.)

A standard ETMS cleanup handler within the OMP server allows the OMP to terminate
gracefully while carefully releasing all its owned resources.

7.5.1 OMP Routines and Procedures

atoi

Atoi converts an ASCII text string into an integer. The sign is maintained.

buffer_add

Buffer_add places the completed TO message at the end of the buffer. If the buffer
overflows, send_to_nas is called to send the filled buffer. If the TO is over 1024 bytes, it is
considered to be an error and is ignored. Otherwise the TO is placed onto the buffer.

buffer_init

This routine formats the buffer header by adding the security field followed by an SQ
message. The sequence number and the timestamp for the SQ message are also computed.
This procedure also sets the time at which this buffer would age and have to be sent.

calculate_speed

This procedure computes the speed based upon two position points and the time at the
specified positions. The speed determination is made by calculating the great_circle distance
between the two points and dividing this by the delta of the times. If the times are not known
or the distance calculation fails, 0 is returned for the speed.

ETMS System Design Document
Version 5.8

7-24

check_sw_mbox

This procedure polls the node.sw connection for any messages and dispatches any received
messages to the appropriate processing routine. The event counters for the connection are
updated accordingly. This routine performs an internal read cycle until there are no more
messages.

The network addressing warning message of WARN_NET_T_GET_NEW_EC causes a call
to get_new_ecs.

If there is a fatal read error, a sequence of calls to close_sw_mbox and open_sw_mbox is
made prior to returning.

Otherwise the type of message is determined and the appropriate processing routine is called:

returned message -> process_returned_message
arinc_msg_data -> process_arinc_message (also reset no_data timer)
net_t_reconfigure -> process_reconfigure
NET_T_GIVE_STATUS_LEV_0 -> process_stats_lev_0
all other stats requests -> stats_not_supported

All other messages cause an error message to be sent to them stating that it is an unknown
message type to DOTS.

cleanup_handler

This procedure performs an orderly shutdown by calling close_sw_mbox and then closing
the error trace file.

clear_flight_record

This routine zeroes out all entries in the default template record. As each field of an ARINC is
parsed, it is placed into this default template record.

close_sw_mbox

This procedure closes the connection to the ETMS message switching system (node.sw).

create_to

This routine formats the TO message by using the fields as filled in within the default template
record. This routine also calls calculate_speed to do as its name implies.

ETMS System Design Document
Version 5.8

7-25

This routine also maintains a list of the last ten TO messages generated. This list is included
within the response to the S) Net.mail command.

enter_fix

This routine creates an entry on the linked list for the specified fix name. The fix name is first
hashed by hashit, and the result is used to determine the linked list location to place the entry.
If there is no entry at the linked list for the entry, it is created. Otherwise, the linked list is
traversed until the end is reached, and the entry is then appended onto the list.

extract_number

This routine is part of the logic that breaks up an word from the adaptation file into an ETMS
address. This routine extracts the value from the address; it is usually separated by a period or
close parenthesis. This routine then returns the binary value for the ASCII specified. A zero is
returned if the format is invalid.

extract_three_words

This routine is part of the initialization logic. It returns three words from an input line (from
the adaptation file). The routine get_word is called first. If the word is not two to three
characters long or begins with a #, the routine returns immediately. Extract_three_words then
calls get_word again. If the second word is not exactly two digits, this routine terminates.
The numeric value is then computed. The remainder of the line is then extracted, leading
nondigit or nonletters are dropped, and trailing spaces are dropped. The surviving characters,
up to eighty long, are then returned.

fix_lookup

This routine looks up the specified fix in the fix linked list. The resultant latitude and longitude
is then returned. The lookup is done by first hashing the fix name (by calling hashit) and then
traversing the indicated linked list for an exact match. If the fix name is not found, this
routine returns false.

get_day_of_month

This routine returns the day of the month based upon a time input.

get_new_ecs

This routine returns new event count values for network addressing. This routine is called
whenever the API system indicates that there is a need to obtain new event counters.

ETMS System Design Document
Version 5.8

7-26

get_token

This routine extracts the next token from the ARINC message buffer. It first skips over any
characters that are not upper case letters, digits, or the * character. This routine then moves
the characters of upper case letters, digits, or the * character. Early termination occurs if the
end of the buffer is found or eigthy characters have been moved.

hashit

This procedure takes an ASCII word and performs a tailored arithmetic hash operation on it
to generate a pseudo random address. The resultant address is then used to indicate which
linked list header to traverse to add or extract a fix entry.

initialize

This routine configures the OMP process so that it is able to perform its functions. The
following operations are performed:

• Connect to ETMS message switching by calling open_sw_mbox.

• Setup start time.

• Determine the ETMS file structure (i.e. /etms5) and upon failure
terminate.

• Create the necessary working environment (create file:
</etms5>/dots/trace/dots.error and the </etms5>/dots/data files).

• Setup the time event counter.

• Obtain the configuration file (argument 1) and if none is found, terminate.

• Invoke the function read_adaptation_file to do its namesake.

• Create the memory mapped fix file by calling map_fix_rec and then fill in
the memory mapped file by calling read_fixfile to read the fixes into
memory from file (etmss)/DOTS/FIX.DAT

• Read in the SMI token file by calling read_file.

is_eol

This routine checks to see if the supplied character is an end of line character (ASCII NL)

latlong_to_short

ETMS System Design Document
Version 5.8

7-27

This routine translates an ASCII lat/lon value in the twelve-byte format of ddmmA/dddmmA
into two binary values. If A is S or E, a negative value is returned. Otherwise the returned
value is either dd*60+mm (for latitude) or (ddd*60+mm) for longitude.

map_fix_rec

This routine creates a memory mapped file that will contain the fix names and their respective
latitude and longitude values.

match_smi

This procedure performs a binary search on the SMI table looking for the keyword. If the
keyword does not exist, a -1 is returned, otherwise the table index is returned.

open_sw_mbox

This routine formats the call to the API toolkit of net_open to connect to the node.sw. The
connection class is DOTSTO. On a successful connection, the event counters are
appropriately primed. On a failure, the event counters are set to a one-minute timer to try
again.

parse_message

This routine controls the parsing of ARINC messages into ETMS TO messages.

Parse_message begins by calling clear_flight_record which initializes the global workspace
that will contain fields as they are translated.

If the first word is PDM (possible duplicate message), the buffer is moved to lose the
indicator.

If the first four characters are POS (the message is a POS message), invoke the process_pos
routine, and advance to the finish_up label.

If the first four characters are (RCL), the message is a RCL message; invoke the process_rcl
routine, and advance to the finish_up label.

If the message was not one of the above cases, extract the first word in the buffer. If the
word is not FI, it must be three characters, otherwise the message is ignored. If the three
characters are not in the SMI table (calling match_smi to look at the table read in at
initialization), the message is ignored.

To complete and summarize, if the first word was not FI and the first word was in the SMI
table, get the next word by calling get_token.

ETMS System Design Document
Version 5.8

7-28

A non (POS) and a non (RCL) is then processed by repetitively checking the value of the
most recently read token and calling the appropriate processing routine. This checking loop
completes when the processing routine returns an error, there are no more tokens, or the
processing routine signals that enough data has been extracted from the message to make a
complete TO message.

The following table is then used:

token processing routine
FI process_fi
NP process_np
OV process_ov
EO process_eo
AL process_al
WV process_wv
DS process_ds
DA process_da
OF process_of

A token of DT marks the end of the processing for this message.

After each token is processed, get_token is called to perform another iteration. The
processing terminates when there are no more tokens.

The finish_up label is utilized after all the above processing completes. This label signals the
validation of the now populated global flight record. If there is not at least one position and
one time, the message is ignored.

This procedure completes processing by calling create_TO and buffer_add to translate the
flight record into a TO message and to buffer it for sending to the specified clients when
either the buffer fills or times out.

process

This routine is in essence an infinite loop. It calls check_sw_mbox to get messages from the
ETMS, if the timer goes off, it calls send_to_nas to send any buffered data and it then waits
for an event counter. If the connection to node.sw is invalid, it will also attempt to reconnect
by calling open_sw_mbox on a timed basis.

process_al

This routine processes the AL (altitude) token. Altitude may have a prefix of C, D, or L and
be five or 9 characters long. If this is so, strip off first character before processing the ASCII
digits.

ETMS System Design Document
Version 5.8

7-29

The altitude must be four or eight characters and the first character must be A or F. The next
three characters must be digits. These three digits are the altitude and they are copied into
alt1, alt2, and alt3 fields of the global flight record.

Any errors cause the flight record to be marked invalid.

process_arinc_message

This routine takes a quick look at all messages from Arinc. If the message does not begin
with the QU priority field, it is ignored. Otherwise, the skip_header routine is called to remove
the ARINC header and the main parsing routine parse_message is activated to do its job.

process_da

This routine processes the DA (departure aerodrome) token. This routine begins by calling the
get_token routine. This token is the departure airport, which is checked for a length of three
or four characters. The valid airport name is then moved into the dept field of the global flight
record.

Any errors cause the flight record to be marked invalid.

process_ds

This routine processes the DS (destination aerodrome) token. This routine begins by calling
the get_token routine. This token is the destination airport, which is checked for a length of
three or four characters. The valid airport name is then moved into the dest field of the global
flight record.

There is allowance for an optional ETA field. The buffer position is saved and get_token is
called. If the token is not four digits, the buffer position is restored and this routine completes
its processing.

This possible ETA field is validated for hours being the 00-23 range and for minutes being in
the 00-59 range. If this is so, the ETA is moved into the global flight record dest_eta field.

Any errors cause the flight record to be marked invalid.

process_eo

This routine handles the EO (estimated to be over a position at a time) token. It begins by
calling process_lat_lon_time. When process_lat_lon_time is compeleted, the returned values
are moved into pos2 and eta2 of the global flight record.

process_error

ETMS System Design Document
Version 5.8

7-30

This routine logs error messages into the error_stream (and erases the error stream if it is too
large) and sends an error message to the specified ETMS address.

process_fi

This routine processes the first field in most position reports, the aircraft identifier. It must be
two to seven characters with the first characters being an upper case letter and must contain
all upper case letters and digits.

This routine calls get_token to obtain the aircraft identifier and if it does not satisfy the above
rules, the global flight record is marked as being invalid.

A valid aircraft identifier is moved into the acid field of the global flight record.

process_lat_lon_time

This routine extracts the position and time at the position from a buffered ARINC message.
This routine begins by calling get_token.

A fix name is two to six characters with the first character being an upper case letter. If the
fix name is valid, based upon a call to fix_lookup, advance to the OBTAIN_ETA label. There
is a special case for SN???W where the W is removed prior to the checking of the fixes.

If the above rule did not work, check for altitude (refer to process_al for further details)
which is either A or F followed by three digits. If it is an altitude, reset the buffer pointer
before the get_token in this routine, and return. This is an altitude and not a position field.

If it is not an obvious fix or altitude, check for an ETA, save the buffer position, and call
get_token. If the token is exactly four digits, return; otherwise reset the buffer pointer before
this possible ETA and return.

If it is not an easy fix, altitude or ETA, try to work this as a lat/lon field.

This routine counts the consecutive digits. If there are not one to four digits, this is not a
latitude; advance to the OBTAIN_ETA label. Otherwise move in the latitude and pad it out
with trailing zeroes until there are four digits moved.

If there are no more characters, get the next token.

Move on the subsequent N or S, if neither move in N. The latitude is now complete move in
the / character and look at longitude.

If there are no more characters, get the next token.

This routine counts the consecutive digits. If there are not one to five digits, this is not a
longitude; advance to the OBTAIN_ETA label. Otherwise move in the latitude and pad it out
with trailing zeroes until there are five digits moved.

ETMS System Design Document
Version 5.8

7-31

If there are no more characters, get the next token.

Move on the subsequent E or W, if neither move in W.

This routine then validates that the latitude/longitude is valid; otherwise it clears the field.

The label OBTAIN_ETA saves the buffer pointer and then calls get_token. There must be
four digits such that the hours and minutes are in the ranges 00-23 and 00-59, respectively. If
the time field is valid, call get_day_of_month to compute the day to apply to this time;
otherwise reset the buffer pointer, and return.

process_np

This routine processes the next point by calling process_lat_lon_time. The resulting data is
moved into pos3 and eta3 of the global flight record.

process_of

This routine processes the time off (departure time) field. This routine calls get_token to
obtain the time field. If the field is not four digits, the buffer pointer is saved, and the next
token is obtained and checked. If the second token is not four digits, the buffer is reset and
no time is returned.

In either case the four digits are checked to see that the hours and minutes are in the ranges
00-23 and 00-59, respectively. If the time is invalid, it is ignored; otherwise it is copied into
field dept_time of the global flight record.

process_ov

This routine processes the time over a position field; it calls process_lat_lon_time. The
resultant information is moved into fields pos1 and eta1 of the global flight record.

The next field may be an optional altitude. Save the buffer pointer and call get_token. If the
first character is A or F followed by three digits, it is an altitude field. This routine moves the
altitude into fields alt1, alt2, and alt3 of the global flight record. Otherwise the buffer pointer is
reset to its saved position.

process_pos

This is a fixed field position report. This routine calls get_token twice. The aircraft identifier
(second token) is then validated. If it is not two to seven characters with the first character
being an upper case letter and all other characters being upper case letters and digits, the
global flight record is marked as being invalid.

After the aircraft identifier is moved into the global flight record, process_lat_lon_time is
called and the flight record fields pos1 and eta1 updated accordingly. This is repeated again

ETMS System Design Document
Version 5.8

7-32

with fields pos2 and eta2 being updated. This routine calls get_token a third time for lat/lon
information. If there is no third position, this routine completes processing. Otherwise
process_lat_lon_times is called a third time, and pos3 and eta3 of the global flight record are
updated.

process_rcl

Refer to process_pos for details.

process_reconfigure

This routine re-reads the configuration file upon user reconfigure command.

process_return_message

This routine logs all returned messages into the error file. The check_truncate file routine is
called to keep this file from growing too large.

process_stats_lev_0

This routine processes a user S0 command from Net.mail. It returns to the user a formatted
report.

process_wv

This procedure skips over the WV fields. This is done by calling get_token, saving the buffer
position, and then calling get_token again. If the second token is AT, get another token;
otherwise reset the buffer position. The ETMS does not use the WV fields.

put_data

This routine performs generic transmission for the OMP module. It sends messages to the
ETMS messages switching system.

read_adaptation_file

This routine reads in the OMP adaptation file. All empty lines and lines with '#' as the first
printing character are ignored. Processing is terminated on an end of file condition.

All entries in the file are presumed to be addresses or the word new. The word new sets a flag
that is not currently in use.

ETMS System Design Document
Version 5.8

7-33

The address must be in the format (xx.yy.zz). Where xx is site id, yy is node id and zz is the
class identifer.

The following cycle is performed until the end of the file or the address table is filled:

get_line
get_word
extract_number - site_id
extract_number - node_id
extract_number - class
validate site by calling net$_inq_site_ascii

The remainder of the list is ignored when the maximum entries is reached (MAX_SITES).

read_file

This procedure reads in the key_word table (SEI codes). The list is in alphabetical order, and
each line is processed by a call to extract_three_words.

read_fixfile

This procedure reads in the list of fixes. The format is a fix name followed by latitude and
longitude. The enter_fix routine does the work of translating the lat/lon values and loading up
the table.

send_to_nas

This routine sends the buffer when either it fills or times out. If there are no clients,
buffer_init is called; otherwise this routine does nothing except re-arm the timer. Otherwise
the buffer is shipped out in groups of eight addresses. The buffer is then cleared by calling
buffer_init.

skip_header

This routine removes the header by looking for the STX character. The buffer is then moved
up to overwrite the header.

stats_not_supported

This routine returns to the requestor a short message indicating that the requested statistics
report is not supported by this program.

ETMS System Design Document
Version 5.8

7-34

time_to_short

This routine converts an hour and minute field to a 16-bit integer.

7.5.2 Source Code Organization

The OMP consists of one source code module (dots_red.c) and one insert file (dots.h).

Building Instructions
The OMP is built by using the following UNIX Makefile:

#***
#***
ETMS VERSION 5 OPEN SYSTEMS
DOTS MODULE
#***
#***

#--
Directories for this specific software
#--
ROOT_DIR = /RLM.osc
SHARED_DIR = $(ROOT_DIR)/shared
API_ROOT_DIR = $(ROOT_DIR)/api
DOTS_DIR = .

#--
Where to find PasANSI stuff
#--
PASANSI_SRC_DIR = $(ROOT_DIR)/PasANSI
PASANSI_INC_DIR = $(ROOT_DIR)/PasANSI

#--
Where to find API stuff
#--
API_SRC_DIR = $(API_ROOT_DIR)/sources/api_openlib
API_INC_DIR = $(API_SRC_DIR)
API_LIB_DIR = $(API_SRC_DIR)
API_LIB = opensys
API_LIB_FULLNAME = $(API_LIB_DIR)/lib$(API_LIB).a

#--
Compiler flags and API lib
#--
CC=cc
#CFLAGS = -g -I$(DOTS_DIR) -I$(API_INC_DIR) -I$(PASANSI_INC_DIR) -I$(SHARED_DIR)
CFLAGS = -0 -I$(DOTS_DIR) -I$(SHARED_DIR) -I$(API_INC_DIR) -I$(PASANSI_INC_DIR)

#--
Libraries

ETMS System Design Document
Version 5.8

7-35

#--
LIBS = -L$(API_LIB_DIR) -lopensys -lm

#--
Library dependencies
#--
API_INCLUDES = \
 $(API_INC_DIR)/api_calendar.h\
 $(API_INC_DIR)/api_error.h\
 $(API_INC_DIR)/api_evt.h\
 $(API_INC_DIR)/api_file.h\
 $(API_INC_DIR)/api_ios.h\
 $(API_INC_DIR)/api_lib.h\
 $(API_INC_DIR)/api_machine.h\
 $(API_INC_DIR)/api_mbx.h\
 $(API_INC_DIR)/api_misc.h\
 $(API_INC_DIR)/api_mutex.h\
 $(API_INC_DIR)/api_name.h\
 $(API_INC_DIR)/api_net.calls.h\
 $(API_INC_DIR)/api_net.h\
 $(API_INC_DIR)/api_pad.h\
 $(API_INC_DIR)/api_pfm.h\
 $(API_INC_DIR)/api_program.h\
 $(API_INC_DIR)/api_set.h\
 $(API_INC_DIR)/api_shmem.h\
 $(API_INC_DIR)/api_vfmt.h

ETMS System Design Document
Version 5.8

7-36

API_LIBRARY = $(API_LIB_DIR)/libopensys.a

#--
Dependent include files
#--
DOTS_INCLUDES = \

$(API_INC_DIR)/api_lib.h\
 $(SHARED_DIR)/etms.lib.h \

$(PASANSI_INC_DIR)/PasANSI.h\
$(DOTS_DIR)/dots.h

#--
Dependent object files
#--
OBJECTS_DOTS = $(DOTS_DIR)/dots_read.o \

$(SHARED_DIR)/etms.lib.o \
$(DOTS_DIR)/ftm_great_circle.mathlib.bin \
PasFile.o

#--
What to build
#--
all: dots
#--
How to build it
#--
dots: $(OBJECTS_DOTS)

@echo '[linking $@]'
$(CC) -o $@ $(OBJECTS_DOTS) $(LIBS)

#--
all of the .o files
#--

dots_read.o: $(DOTS_DIR)/dots_read.c $(DOTS_INCLUDES)
@echo '[compiling $@]'
$(CC) $(CFLAGS) -c $(DOTS_DIR)/dots_read.c

PasFile.o: $(PASANSI_INC_DIR)/PasFile.c $(PASFILE_INCLUDES)
@echo '[compiling $@]'
$(CC) $(CFLAGS) -c $(PASANSI_INC_DIR)/PasFile.c

$(SHARED_DIR)/etms.lib.o:
cd $(SHARED_DIR); make etms.lib

OMP Constants
#define NET_NIL (-1) /* VALUE OF HANDLE ON FAILED OPEN AND ID OF FAILED INQUIRE */
#define TIME_EC 1
#define GET_EC 2
#define PUT_EC 3
#define MAX_EC 3

ETMS System Design Document
Version 5.8

7-37

#define MAX_SITES (NET_MAX_ALLOWED_ADDRESSES*2)
#define MAX_ETMS_SEQUENCE 9999
#define MAX_BUFFER_SIZE 6000
#define LINE_SIZE 512
#define BUFFER_SIZE 512
#define THIRTY_SECONDS (30*4) /* THIRTY SECONDS USED FOR EVENT COUNTER ARMING */
#define THREE_MINUTES (3*60*4) /* THREE MINUTES USED FOR EVENT COUNTER ARMING */
#define TWENTY_MINUTES (20*60*4) /* TWENTY MINUTES USED FOR EVENT COUNTER
ARMING */
#define BUFFER_TIMEOUT_SECONDS 30
#define FIX_REC_SIZE (sizeof(FIX_REC))
#define MAX_FIX_ENTRIES 5000
#define ARINC_MSG_DATA 16435
#define DOTS_SECURITY_CODE " "
#define fix_file "fix.dat"
#define smi_file "dots_smi"
#define NAME_LEN 10

7.5.3 OMP Data Structures
typedef struct {
 char acid [7];
 char pos1 [12];
 char pos2 [12];
 char pos3 [12];
 char alt1 [4];
 char alt2 [4];
 char alt3 [4];
 char eta1 [7];
 char eta2 [7];
 char eta3 [7];
 char dept [4];
 char dest [4];
 char dest_eta [4];
 char dept_time [4];
 int valid;
 short speed;
 } FLIGHT_REC;

typedef struct FIX_REC {
 char name[NAME_LEN];
 char lat[NAME_LEN];
 char lon[NAME_LEN];
 char magv[NAME_LEN];
 char dsply;
 struct FIX_REC * next_rec;
 } FIX_REC;

typedef FIX_REC * FIX_REC_PTR;
typedef char char3_t [3];
typedef char char8_t[8];

ETMS System Design Document
Version 5.8

7-38

typedef char char10_t[10];
typedef char char12_t[12];
typedef char char32_t[32];
typedef char char80_t[80];
typedef char char256_t[256];
typedef char char512_t[512];
typedef char char1024_t[1024];
typedef char char8192_t[8192];

typedef char3_t KEY_ARRAY [256];
typedef int KEY_INDEX [256];
typedef char80_t KEY_TEXT [256];

7.6 ARINC and NADIN Servers

Purpose

Arinc.Server is a dual program. It is either Arinc.Server or Nadin.Server. A compilation
switch determines which server type it becomes. The code is virtually identical; the
exceptions are address length, priority field format, message length, and message framing.
The differences will be identified where needed in this section. Unless stated otherwise, the
word Arinc can be used to mean Arinc or Nadin in this section.

The Arinc.server is described in this section, and it intimately interacts with the Arinc.driver.
For simplicity, Arinc.server and Nadin.server are called Server; Arinc.driver and Nadin.driver
are called Driver.

Input

Runtime Parameters. There is only one argument to the Server and it is optional, the name
of the configuration file. If the argument is missing or invalid (it must begin with a /), the
following defaults are used:

Arinc: /<etms5>/arinc/config/arinc.server.config
Nadin: /<etms5>/nadin/config/nadin.server.config

Statistical Requests. See Arinc and Nadin Processing.

Configuration File Format. Note that any blank line or any line beginning with # is ignored.
The first section (or line) contains the Server mailbox name. This must match the name
specified in the Driver configuration file. A typical line is:

/mbx/arinc.mbx.

The second section contains the class to address mapping table. There can be up to fifty
classes (valid lines) with a maximum of five Arinc addresses per line. A typical line is:

ETMS System Design Document
Version 5.8

7-39

PRINTR ACYZZYA TFMBSYA

The class table must be terminated with a line beginning with the word END.

The third section is a list of addresses to be notified of various noteworthy events (users to be
notified), Arinc up/down, messages timed out, messages being rejected. There can be up to
16 lines of addresses with one address per line. The format of the address is:

(aaa.bbb.ccc), where aaa is site, bbb is node, and ccc is class

For example, (6.4095.9) causes errors to be sent to all occurrences of class nine on site six
(all Net.mail on $vntsca).

The notification address list must be terminated with a line beginning with the word END.

The fourth and final section is the auto distribute list. This is a list of addresses and the class
of messages being received that will be sent to the address. Up to 16 addresses can be
specified. One address and one class are allowed on each line. The receiver of these messages
must acknowledge them, or they will be resent. The format of each line is (aaa.bbb.ccc)
DDDDDD, where aaa is site_id, bbb is node_id, ccc is the class field of the network address,
and DDDDDD is one of the classes specified in the second section of this configuration file.

For example, (6.4095.9) SI would cause each SI type message to be sent to (6.4095.9) until
either an acknowledgment is received or the message times out.

Output

Test Message Generation. Test messages can be sent to ARINC by using the keyword
TEST 1 or TEST 2 on a Net.mail M command to the Server, i.e., M $this.all.nadin.all TEST
1.

The Driver can be reset by using the keyword RESET on a Net.mail M command, i.e., M
$this.all.nadin.all RESET.

Hourly Archives. All messages to or from Arinc, with appropriate control information, are
written into files which are created for each hour, the transmit files are called XMT, and the
receive trace files are called MSGS.

All messages from the ARINC network are written to a log file (/arinc/msgs.date/time), e.g.,
//jfk/arinc/msgs.960809190031.

All messages to the ARINC network are written to a log file (/arinc/xmit.date/time), e.g.,
//jfk/arinc/xmt.960809190031.

All messages from the NADIN network are written to a log file (/nadin/msgs.date/time), e.g.,
//jfk/nadin/msgs.960809190031.

ETMS System Design Document
Version 5.8

7-40

All messages to the NADIN network are written to a log file (/nadin/xmit.date/time), e.g.,
//jfk/nadin/xmt.960809190031.

Processing

Server is the front end for the ARINC driver. It receives message blocks from the Driver and
passes the messages to the appropriate clients. It also forwards messages from clients and/or
com_server mailboxes to the ARINC network.

Statistical Requests. The Server program responds to the following statistics requests from
Net.mail.

A Net.mail S0 request returns the large statistics list. This S0 report lists the Driver
connection, its state, message counts, and their timing.

A Net.mail S1 request causes a poll to be sent to the Driver. The information received from
the Driver is reformatted by Arinc.server into a simple table.

A Net.mail S2 request returns the clients registered to Server and the adaptation table of
addresses to client connection types.

A Net.mail S3 request returns the list of messages queued to the Driver.

Receiving Arinc Data from the Arinc Server. There are two ways to receive data from
the Server: register and auto distribute.

Register. A program registers to Server to receive a class of data. This is a standard
register_to_service_provider interchange. The class of services is specified in the client
connection types as read from the Arinc configuration file.

Each message from Arinc has its destination address checked by Server. If the address is
listed for a class, the registered table is checked. If there is a process registered for that class,
the message is sent to the registered user's address.

Auto Distribute. Server maintains an auto distribute list as read from its configuration file.
This is a list of classes and the receiver's address. The node_id field of the address is typically
wildcarded to all. The class must be present in the Arinc configuration file to be valid.

As with registered users, the destination Arinc address is checked against the class table. If
there are any matches, the auto distribute table is checked. If the class is present, a message
is sent to each version 5 address that was read from the auto distribute section of the Arinc
configuration file. There is, however, a protocol used between Server and an auto distribute
destination address.

ETMS System Design Document
Version 5.8

7-41

For auto distribute messages that are explicitly stated in the adaptation file, a message code of
CT_OUTPUT_MESSAGE_CODE is sent. The first 4 bytes of data are a sequence number. If
Server does not receive a message code of CT_OUTPUT_MESSAGE_ACCEPT_CODE with
the same four bytes of data, it will resend the message at periodic intervals. If the message is
never acknowledged by the receiver it is eventually discarded.

Sending Messages To Arinc Via Server. There are two ways to send messages to Arinc
using Server:

• mailbox

• version 5 techniques

Mailbox Sending. The mailbox method is archaic and should not be used. A client process
connects to Server as a valid client class. Server checks every subsequent message from the
client process for valid format. If the message is in a valid format, it is queued for shipment
to the Driver.

Version 5 Sending. The version 5 technique for sending a message to Arinc requires the
message code to be CT_OUTPUT_MESSAGE_CODE (16435), the first four bytes of the
message to be a sequence number, and the following three bytes to be QUu for Arinc or FFu
for Nadin. Server will then echo the message back to the user with a message code of
CT_OUTPUT_MESSAGE_ACCEPT_CODE (16436).

Handling messages to Arinc. Every message being output to Arinc is queued into a
permanent file that is reused. This allows for an Arinc message that was queued by Server to
survive the termination and restart of the Server and still be sent to Arinc. The message is
removed from the queue under three circumstances:

• It was successfully transmitted.

• It timed out.

• The queue overflowed. (This very rarely occurs.)

The last two cases cause the message to be returned to sender, an error message sent to the
logger process, and an entry made into the current hour's XMT file.

The processing of messages to Arinc is a singly threaded pipeline. All messages are queued by
the Server. A message is then sent to the Driver from the Server. The Driver must
successfully transfer the message to the Arinc network before the Server will remove the
message from the queue and give the subsequent message to the Driver.

Every message within the Server, when it is added to or retrieved from the queue, is validated
for format. There are three checks made:

• Excessive line size

ETMS System Design Document
Version 5.8

7-42

• Excessive message size

• Excessive nonprinting characters within the message (Carriage return and
line feed are presumed printable in this context.)

If the message fails these checks, it is deleted from the queue, logged into this hour's XMT
file, and discarded.

7.6.1 ARINC and NADIN Routines and Procedures

Procedure add_to_arinc_queue takes messages from other processes and buffers them into a
secure area until they can be sent to the Driver. This procedure begins by calling
validate_arinc_format and if the message fails validation, returns an error flag to its caller.

This procedure formats a queue entry of queue_rec_t, updates the header record of the queue
file, and then writes the entry into the permanent queue file.

If the queue is filled, Server deletes the oldest entry, notifies logger and all users to be notified
(section three of the configuration file), and makes an entry into this hour's XMT file.

Procedure auto_distribute_ack_received matches acknowledgments from auto distribute
users to the acknowledged message and receives the message from the nonpermanent auto
distribute buffer. The source address is the primary key on the match with the sequence
number being the secondary match key.

Procedure auto_distribute_try_again resends messages from the nonpermanent auto
distribute buffer. There is an enforced time interval between sending messages to the same
address. When the interval is exceeded, the appropriate message is resent. If the message
times out on this auto distribute buffer, the message is removed and a notification is logged to
the xmt hourly files.

Procedure auto_distribute_add_to_q attaches an auto distribute message to the end of the
specified auto distribute linked list. This procedure sets the approriate timeout and control
information for the entry.

Procedure auto_distribute_flush_q destroys the auto distribute linked lists. This is used on a
reconfigure or program termination.

Procedure check_q_for_timeout determines whether messages in the Arinc to Driver queue
have timed out or not. If an entry has timed out, it is deleted from the queue (permanent
queue file).

A deleted entry causes the first record in the permanent queue file to be rewritten and the
timed out entry to be marked as deleted. All users to be notified are notified, and the entry is
logged into this hour's XMT file.

ETMS System Design Document
Version 5.8

7-43

Procedure check_svr_mbox reads messages from its Server mailbox. It continues reading and
processing until there are no more messages. All open requests are sent to
mbox_process_open, all closes are sent to mbox_process_eof and all data messages are sent
to svr_process.

Each channel is individually checked, and if it exceeds the system limit of bytes transferred, it
is closed (otherwise the channel becomes unusable).

Procedure check_timer performs scheduled operations. If the auto distribute threshold is
exceeded, a call is made to auto_distribute_try_again. If the queue retry threshold is exceeded,
a call is made to check_q_for_timeout. If the primary event counter is not satisfied, the
routine
does nothing else.

Check_timer then rearms the time event counter. If the NOOP timer is exceeded, a NOOP
message is sent to all Server mailbox clients.

Procedure check_truncate_file is a common utility routine that checks the trace file's current
size, and if it is more than 65KB, the file is cleared.

Procedure clear_chans deactivates all Server mailbox client channels. To do this it sends a
close message to each client, waits 0.10 seconds, and then deallocates each channel. This is
called when there is a reconfigure or program termination.

Procedure clear_create_arinc_queues is called at initialization to recreate the Arinc queue.
This is a permanent file, so this is called only when the control information in the queue file is
corrupted. The queue files are /arinc/queue_file for Arinc and /nadin/queue_file for Nadin.

Procedure compare_strings is a common utility routine that performs an arithmetic
comparison of two strings. It does a byte-by-byte comparison until all bytes match or a
mismatch is found. A zero is returned if they match, a -1 is returned if any byte of the first
string has a value less than the byte in the same position of the second string, a -2 is returned
if any byte in the first string has a value greater than the byte in the same position in the
second string.

Procedure create_arinc_queue attempts to load the permanent Arinc queue file at initialization.
The control portion of the file is validated. If the control portion is invalid or there is any error
opening the queue file, create_arinc_queue calls clear_create_arinc_queues to recreate the file.
The queue file is retained from one invocation of Server to the next. The queue files are
/arinc/queue_file for Arinc and /nadin/queue_file for Nadin.

Procedure create_arinc_window is called to make a window when Arinc wants to display the
fact that there was no data for a number of minutes.

Procedure create_log_window creates the two hourly transaction files. All messages to or
from Arinc, with appropriate control information, are written into files which are created for
each hour. The transmit files are called XMT, and the receive trace files are called MSGS.

ETMS System Design Document
Version 5.8

7-44

• All messages from the ARINC network are written to a log file
(/arinc/msgs.date/time), e.g., //jfk/arinc/msgs.960809190031.

• All messages to the ARINC network are written to a log file
(/arinc/xmit.date/time), e.g., //jfk/arinc/xmt.960809190031.

• All messages from the NADIN network are written to a log file
(/nadin/msgs.date/time), e.g., //jfk/nadin/msgs.960809190031.

• All messages to the NADIN network are written to a log file
(/nadin/xmit.date/time), e.g., //jfk/nadin/xmt.960809190031.

Procedure create_mbox creates the Server mailbox. The name of the mailbox is read from the
Arinc configuration file from the first section. Create_mbox performs a deletion of any
occurrence of the Server mailbox file (with the delete when unlocked flag set) to preclude any
one program from seizing the mailbox file and not allowing Server to control it. The mailbox
is then created and the mailbox event counter is obtained via ETMS API calls.

Procedure display_arinc_msg is a utility routine that dumps messages from the Driver to a
specified stream identifier. There is a record structure in use with the format varying by
message codes. This routine dumps the information in a consistent format.

Procedure display_error writes out error messages to the trace stream and standard output.
The trace stream is usually the file /<etms5>/arinc/trace/arinc.server for Arinc or
/<etms5>/nadin/trace/nadin.server for Nadin.

Procedure display_net_error writes out version 5 network addressing error messages to the
trace stream and standard output. The trace stream is usually the file
/<etms5>/arinc/trace/arinc.server for Arinc or /<etms5>/nadin/trace/nadin.server for Nadin.

Procedure extract_sequence is a routine written to extract a record item from a buffer. It is
designed to fake out the PASCAL compiler type checking.

Procedure format_for_driver is called to format Arinc messages requested by a user via
Net.mail. A message code of net$_msg_data_t with a keyword of TEST 1 causes a short test
message to be sent to Arinc or Nadin via the Driver. A message code of net$_msg_data_t
with a keyword of TEST 2 causes a longer test message to be sent to Arinc or Nadin via the
Driver. A message code of net$_msg_data_t with a keyword of RESTART causes a reset
command to be sent to the Driver. An S1 request by the user had been previously translated
into an action code of DSTATS, which causes a request for statistics to be sent to the
Driver. Messages are sent to the Driver by calling send_to_driver.

Procedure get_word_upper_case extracts a word from the specified buffer. The output buffer
is 1024 bytes long, left justified, and blank filled. The returned word is forced to upper case
and the length of the word is returned as word_size even though the entire 1024 bytes are
blank filled. This routine should be used with caution in that it does not check that the

ETMS System Design Document
Version 5.8

7-45

destination address can contain all 1024 bytes that are blank filled. On some programs this is
notorious for destroying other variables or the stack itself.

Procedure initialize sets up the Server environment. Initialize begins by obtaining the base
directory structure by calling the get_etms_path module. The returned path is currently
/etms5 and is referred to in this document as /<etms5> to represent that it is externally
controlled.

Initialize creates the /sio_files and either the /arinc or /nadin directories. The configuation file
is defaulted to either /<etms5>/arinc/config/arinc.server.config or
/<etms5>/nadin/config/nadin.server.config. Argument one to the program is then checked. If
argument one exists, is over two bytes long, and begins with a /, it overwrites the previous
default configuration file name.

Initialize creates the trace file. This is done by creating the /<etms5>/arinc/trace (or
/<etms5>/nadin/trace) directory and then creating the trace file. The trace file is constrained
to 64Kb long by periodic calls to check_truncate_file within Server. The trace file name is
either /<etms5>/arinc/trace/arinc.server or /<etms5>/nadin/trace/nadin.server.

Initialize clears the class to address table and the Server mailbox client list.

Initialize obtains the time event counter and arms all timers. After performing the time
overhead, Initialize calls the following routines to complete the initialization:

• read_adapt_file to load the configuration file

• create_mbox to create the Server mailbox

• create_arinc_queue to load the permanent Arinc queue

• net_open to interface with the ETMS network addressing system

Procedure kill_arinc_driver terminates the Driver process. It will not terminate the process
until a parameterized interval has been exceeded. It invokes the /com/sigp program to
terminate either Arinc.driver or Nadin.driver. This is typically called when too many
messages are timing out in the Driver.

Procedure log_outbound_message writes received Driver control messages into this hour's
XMT file. It invokes write_header to apply the standard header format and then writes the
approrpriate text for each message type.

Procedure mbox_process_eof handles the situation of a close message being received in the
Server mailbox. This routine performs the table cleanup for the client and deallocates the
mailbox channel.

Procedure mbox_process_open handles the situation of a user connecting into the Server
mailbox. The first word of the mailbox message is the desired connection class. This must
match a class entry read from section two of the configuration file. If it does not, an open

ETMS System Design Document
Version 5.8

7-46

rejection message is returned to the opening process. If it does match, the second word of
the message contains login information, which is retained, and an open accepted message is
returned to the opening process. The various parameters for the mailbox channel are then
updated. If the connecting class is ARINC or NADIN, the Driver channel and control
information are set. If the connecting class is DISPLY, only one is allowed, and the last one
in is the valid one. A special flag is set so that all received messages and the allied control
information will be sent to the DISPLY channel.

Procedure move_bytes is a common utility routine that moves presumed bytes from one string
to another. This is another method of fooling PASCAL type checking. Any variable type can
be the origin or destination string. This routine should be used with caution in that it does not
check that the destination address can contain all the bytes that are being moved. On some
programs this is notorious for destroying other variables or the stack itself.

Procedure net_open connects to the ETMS network addressing system as class ARINC or
class NADIN. The appropriate event counters are obtained and armed.

Procedure net_poll reads and processes all messages from the ETMS network addressing
system. It runs as a continuous loop until all messages have been read and resolved. If there
are no more messages or an error occurs, this routine will return processing to the calling
routine.

The event counter for the network is rearmed on each read cycle. If the read returns no
messages, this routine returns. If there is a warning error on the read from the network, the
event counters are obtained and rearmed again.

If a fatal read error occurs, the error is logged, the network connection is terminated, and a
new connection to the network is attempted. In any case, as a result of this error, this routine
returns control to its calling routine.

If the received message is a return to sender, unregister the user.

All other messages are given to net_process_message.

Procedure process_net_user_command processes net$_msg_data_t commands from users. If
the first word of the command is RESTART or RESET, a restart command is sent to
format_for_driver. If the first word is TEST and the second word is 1 or 2, the send a test
message is forwarded to format_for_driver. If format_for_driver is called, a reply is sent to
the requesting Net.mail. Otherwise nothing is returned.

Procedure net_process_message routes messages received from the ETMS network
addressing system to the appropriate processing routine. The following table gives the
message type and the processing routine:

net$_t_give_status_lev_1 : process_s1
net$_t_give_status_lev_2 : process_s2
net$_t_give_status_lev_3 : process_s3
net$_t_give_status_lev_x : process_s0 (for net.mail commands s4 - s9 ands0)

ETMS System Design Document
Version 5.8

7-47

ct_output_message_accept_code : auto_distribute_ack_received
ct_output_message_code : processed internally - see below
net$_t_reconfigure : processed internally - see below
net$_t_reg_for_services : processed internally - see below
net$_t_msg_data : process_net_user_command (if not dest ined for
 driver - see below)

The message type ct_output_message_code signals a message to Arinc or Nadin with an
acknowledgment of receipt back to the sender. The first four bytes of the message are a
sequence number. The entire message is given to the sender with a message code of
ct_output_message_accept_code. The first four bytes are then removed. The message is
ignored if the fifth and sixth bytes are not FF for Nadin or QU for Arinc.

A message of the type net$_t_msg_data is pre-screened prior to calling
process_net_user_command for being a message to the Driver. If the first three bytes are QU
for Arinc or FF for Nadin, it is a message to the Driver and process_net_user_command is
not called.

All messages to the Driver are logged into this hour's MSSG file, formatted for the Driver and
sent to the Driver via the send_to_driver call.

A message of net$_t_reconfigure causes the Server to reload all its internal tables. If the
password is not valid, the command is ignored, and an error message is returned.

The reconfigure is logged into this hour's XMT file and into the trace file and an
acknowledgment is returned to the requesting process. The following procedures are then
called to satisfy the reconfigure command:

clear_chans
auto_distribute_flush_q
read_adapt_file
create_mbox

A message of net$_t_reg_for_services contains the number of requested services (class
types). If the count is zero then unregister_user is called, otherwise register_user is called. On
every received message from the Driver, the destination Arinc address is checked against the
address to class table. Each match causes the registered user table to be checked. The users
who are registered for that class will receive the message.

Procedure process is the main processing routine of the Server. This routine is an infinite loop
exited only by program termination. The following operations are performed in this
processing loop:

• check to see if it is time to open the next hour's XMT and MSGS files

• call check_timer

• call check_svr_mbox

ETMS System Design Document
Version 5.8

7-48

• call net_poll

• call send_queue

• check timeout on no messages from Driver, call
process_arinc_rcv_timeout

• check timeout on message sent to Driver, call process_arinc_xmt_timeout

• wait for event counter to be satisfied (network addressing message,
Server mailbox message or time)

Procedure Process_arinc_rcv_timeout handles the case of no data being received for a while.
If there is no error window currently displayed, it calls create_error_window to make one.
Updates are made to the error window once a minute. If a minute has not passed, nothing is
done. Otherwise, the window receives an updated no input Arinc data for xx minutes
message, and a copy of the message is sent to all users listed in the adaptation file.

Procedure Process_arinc_xmt_timeout handles the case of no acknowledgment from the
Driver on a message to Arinc. There is a safety check that the Driver does indeed have a
message, and if it does not, nothing is done. Otherwise, an entry is made into the xmt file, a
message is sent to all users listed in the adaptation file, and kill_arinc_driver is called to
terminate the Driver. This covers the case where a driver has problems.

Procedure Process_driver_stats handles the statistical response from the Driver. Earlier, one
or more users had sent an S1 command to the Server. The Server then sent a statistical
request to the Driver. The response is encoded into an ASCII message, framed for ETMS
transmission, and sent to all users who are awaiting the S1 response.

Procedure Process_driver_status processes status type messages from the Driver. In most
cases these are unsolicited responses. The various status messages and the processing that
results are:

• ipc_$status_ok signifies that the message was sent to the Arinc network.
This results in a call to Process_message_sent, and if there are queued
messages, a call is also made to send_queue.

• ipc_$status_failed signifies that the message was refused by the Arinc
network. This results in a call to Process_message_aborted, and if there
are queued messages, a call is also made to send_queue.

• ipc_$status_ready signifies that the Arinc circuit is now available. All
users are notified, and send_queue is called if nothing is outstanding to the
Driver.

• ipc_$status_alive signifies that the Driver is now operational. Users are
notified, and send_queue is called if nothing is outstanding to the Driver.

ETMS System Design Document
Version 5.8

7-49

• ipc_$status_notready signifies that the Driver is in a not ready state. Users
are notified by a call to send_to_users.

• ipc_$status_noline signifies that there is no Arinc connection. Users are
notified by a call to send_to_users.

• ipc_$status_msgrejected signifies that Arinc rejected the message. This
results in a call to Process_message_aborted, and if there are queued
messages, a call is also made to send_queue.

• ipc_$status_noresponse signifies that the Arinc network did not send a
response to the last message. This results in a call to
Process_message_aborted, and if there are queued messages, a call is also
made to send_queue.

• ipc_$status_dcpfail signifies that the DCP microcode failed. This means
that the Driver needs to be reloaded. Users are notified by a call to
send_to_users.

• Any other status message is unexpected; it will be logged and otherwise
ignored.

Procedure Process_message_aborted handles the case where the connected network did not
accept the sent message, the format was wrong, the line was down, the line was not turned
around, etc. If there is no outstanding message to the Driver, there is no processing.
Otherwise, the queued message is updated. If the retry count has not been exceeded, this
routine does nothing. Otherwise, the message is removed from the queue, users are notified
by a send_mail_notice, and the events are logged into the xmt hourly files.

Procedure Process_message_sent handles the case of a message being successfully
transferred to the Arinc network. It removes the message from the queue and logs the event
into the hourly xmt file.

Procedure Process_s0 processes the user request for statistics; the user entered an s0
command to Net.mail. This procedure formats the appropriate statistics and returns the
ASCII report to the user.

Procedure Process_s1 processes the user request for Driver statistics, the user entered an s1
command to Net.mail. This procedure adds the user's address onto a pending queue and
sends a statistics request to the Driver. When the response comes back, it is processed by
process_driver_status who formats and returns the ASCII response to the requesting
Net.mail.

Procedure Process_s2 processes the user request the message distribution information; the
user entered an s2 command to Net.mail. This routine formats the ASCII report of people to
receive system notices, the address mapping table, the process registration list, and the auto
distribution list. The appropriate statistical information is also recorded.

ETMS System Design Document
Version 5.8

7-50

Procedure Process_s3 processes the user request for the display of all pending messages to
the Arinc network. The user entered an s3 command to Net.mail. The message queue is
traversed and appropriate information is extracted and formatted into ASCII messages, which
are then sent to the requesting Net.mail process.

Procedure read_adapt_file reads the adaptation file at process initialization or as the result of
a user's reconfigure command to Net.mail. The appropriate tables and queues are then
configured for the Server operation.

Procedure register_user accepts registrations from users for various services. The services
must be listed in the adaptation file class table or else the user will receive a
net$_t_msg_reg_bad message; otherwise the user will receive a net$_t_msg_reg_ok message.
If the address is already in the service table, the old entry will be replaced. If the service
count is zero, the entry is removed from the service table. When the destination address of a
message is contained in the requested service, the Server sends the message to the registered
user.

Procedure send_buffer writes a specified message to the mailbox.

Procedure send_mail_notice transmits notices that are specific to certain messages to the
users on the notification list (obtained from the adaptation file, people who automatically
receive notifications). This routine also appends message specific information into the
transmitted datagram.

Procedure send_ok_to_driver packages an acknowledgment of received messages to the
Driver. It then calls send_to_driver to forward the acknowledgment.

Procedure send_queue sends the first message on the output queue to the Driver. If there
already is a message outstanding to the Driver, nothing on the queue, no Driver connected or
if the Arinc network is down, this routine does nothing.

Each queue entry to be sent is validated for format and age. If the format is not valid, a notice
is sent to all interested parties, and the message is destroyed. If the message has expired, the
message is logged into the hourly xmt file, a notice broadcast to the broadcast list, and the
message is removed from the queue.

A valid message is written to the hourly xmt file as a transmit attempt, and the message is
sent to the Driver.

If there were no valid entries on the queue, the queue is cleared.

Procedure send_to_auto_distribute_users traverses the service (class) table, and if the
destination address matched (including wildcards), the auto_distribute table is checked. If the
service is present, the auto_distribute address is added to the address list. Whenever the
address list fills or all matches are found, the message is sent (by calling send_to_node).

ETMS System Design Document
Version 5.8

7-51

Procedure send_to_driver begins by checking to see if the message is the type to be queued
(i.e., an outbound message) and if so, calls add_to_arinc_queue to queue it. If there already is
a message outstanding to the Driver and the message is queued, return. Messages that are not
eligible to be queued are control type messages and should be sent immediately.

The message is sent to the Driver if the Driver is connected and ready.

Procedure send_to_node sends messages to the ETMS message switching system. The
message is sent via toolkit calls. If there is a fatal error, the connection is reestablished and
the message is re-sent. No room in the port/mailbox is not a fatal error.

Procedure send_to_registered_users determines what service or class the Arinc destination
address represents. The list of registered users is then checked for the service. All registered
users for this service receive this Arinc message.

Procedure send_to_users formats notices to the notification list users. The notification list is
specified in the adaptation file. This procedure prefaces the user supplied text with a
NOTICE: type header and then sends it to the users on the notification list.

Procedure svr_Process processes the mailbox that the Server created. At this point in time, the
only client on this mailbox should be the Driver. The following processing is performed on
messages from the Driver channel of the mailbox:

• Record the time of receipt and clear any no messages received flags, and
call send_to_users to state that data is again being received.

• If the message from the Driver is of type ipc_$stats, call
process_driver_stats;

• If the message from the Driver is of type ipc_$msg (and it is an Arinc or
Nadin message), send an acknowledgment to the Driver by calling
send_ok_to_driver.

• If the message from the Driver is of type ipc_$status, call
process_driver_status.

• Any other message type is displayed, then ignored.

The message type of ipc_$msg is further processed by logging it into the hourly msgs file and
if a client is connected to the mailbox as class DISPLAY, the message is sent to the process.
The destination Arinc address is then extracted and calls are made to
send_to_auto_distribute_users and send_to_registered_users. All connections to the mailbox
are checked, and if the connection type is the class of the destination address, the message is
sent to the approppriate mailbox channel.

Input messages from channels that are not the Driver are scanned, and if the prefix matches
QU for Arinc and FF for Nadin, the message is sent to the Driver by calling send_to_driver.

ETMS System Design Document
Version 5.8

7-52

Procedure unregister_all_users is called on program termination and on a reconfigure
command. This routine then sends unregister commands to all registered users.

Procedure unregister_user removes a specific user from the registered table. This routine is
called when a message is returned to a specified registered user or when a registered user
unregisters.

Procedure validate_arinc_format checks to see that a message is not too long (3840
characters) and does not contain more than five nonprintable characters (line feed and
carriage return do not count).

Procedure write_header writes uniform headers into the hourly xmt and msgs files.

7.7 ARINC/NADIN Printer Function

Purpose

The Arinc/Nadin Printer function is a printing function that moves received messages from
either the Arinc or Nadin servers onto printers at remote sites.

Processing Overview

The Arinc printing function and the Nadin printing function use the same source code. There
is a runtime switch that determines if the software is supporting Arinc or Nadin print
functions.

The word Arinc in this section will refer to common Arinc and Nadin functions unless the
text states that the function is either Arinc or Nadin specific.

The Arinc printing function consists of three modules:

• Sprinter Module - the Arinc Spooler (Arinc.sprinter)

• Rprinter Module - the remote Arinc queue manager (Arinc.rprinter)

• Qprinter Module - the Arinc queue printer (Arinc.qprinter)

Arinc.sprinter receives messages from the Arinc function and guarantees delivery to all
specified Arinc.rprinter modules at remote sites. The Arinc.rprinter logs the received
messages into hourly files, individual files, and into a shared memory region. The
Arinc.qprinter polls the shared memory region and places the received messages onto a serial
port that is connected to a printer.

7.7.1 Sprinter Module

ETMS System Design Document
Version 5.8

7-53

Purpose

The Sprinter module or Arinc.sprinter receives messages from the Arinc server and
guarantees delivery of those messages to specified Arinc.rprinters.

Design Issue: Environment

Arinc.sprinter is compliant with ETMS version 5 network addressing and open systems. It
has no hardware requirements.

Execution Control

Initialization. The initialization phase creates the output directory, connects to node.sw,
loads the adaptation data and creates the queue files. Arinc.sprinter queues an initialization
message to all specified Arinc.rprinter modules.

Termination. The termination phase closes all resources, for example, connection to
node.sw and each queue file, and then gracefully exits.

Input

Arguments. Arinc.sprinter requires two arguments on its command line. The first argument
must be either the word arinc or nadin. If neither word is specified, Arinc.sprinter defaults
to being in the 'arinc' mode. The second argument is the name of the adaptation file; if none is
specified, the following defaults are used:

</etms5>/arinc/config/arinc.sprinter.config

or

</etms5>/nadin/config/nadin.sprinter.config

Adaptation File. The Arinc.sprinter configuration file consists of addresses of processes to
receive messages from Arinc.sprinter. Each address is in the format of (xxx.yyy.zzz), where
xxx is the ETMS site identifier, yyy is the ETMS node identifier (typically this value is 4095
for all nodes) and zzz is the ETMS class number (this is usually 87 for Arinc.rprinter and 88
for Nadin.rprinter). There is a limit of 16 addresses with one address allowed per line. As is
usual, blank lines or lines beginning with # are ignored.

Messages From Arinc/Nadin. The Arinc.server must have the address of Arinc.sprinter
(and Nadin.server must have the address of Nadin.sprinter) in its configuration file in the
auto-configure section. Otherwise no Arinc (or Nadin) messages will be printed. All messages
from Arinc.server must have a message code of 16435, and the first four data bytes are
presumed to contain the Arinc message sequence number. Arinc.sprinter sends the same
message back to Arinc.server with a message code of 16436 as an acknowledgment.

ETMS System Design Document
Version 5.8

7-54

There is no filtering of Arinc messages in Arinc.sprinter. All messages received from
Arinc.server are forwarded to all listed Arinc.rprinters. The filtering occurs in Arinc.rprinter.

Statistics Requests. Arinc.sprinter considers S0 and S2-S9 to be the same statistics request
and provides a summary of its operation. An s1 command causes Arinc.sprinter to send a test
message to all listed Arinc.rprinters with the address of the S1 requestor.

Output

Log Files. The following are examples of log files:
Arinc.sprinter maintains hourly log files which are named
</etms5>/etms_data/arinc/print.yymmddhhmmss or
</etms5>/etms_data/nadin/print.yymmddhhmmss. These hourly files contain the original Arinc message and its
transition through the queue (i.e. received time, shipment time and acknowledgment time). An example is below:

 Sending mcode: 16437 to: (0006.0007.0037.0002)
Address index: 0 Count: 4 Empty: 12 fill: 52
Address index: 1 Count: 3 Empty: 12 fill: 52
Address index: 2 Count: 9 Empty: 96 fill: 52
Address index: 3 Count: 5 Empty: 52 fill: 52
 Sending mcode: 16436 to: (0006.0007.0006.0009)
============= Queueing Sequence: 2482 Printer Seq: 11061
QU ACYZZYA
.OPBWXUA 050807/043320 689/215117
?**KSFO** UNITED AIRLINES - SFO AREA WX BRIEFING ****
SFO TAF05 0759 050759Z 050808 OPBWX TAF: VRB05KT P6SM SCT030
 BKN070
 TEMPO 0810 5SM -SHRA BKN030
 FM1000 15006KT P6SM -SHRA SCT020 BKN040
 TEMPO 1018 2SM RA BKN020
 FM1800 17010KT P6SM -SHRA SCT020 BKN040 PROB40 1803
 VRB15G25KT 2SM TSRA BKN020CB....MIN TEMP 12(54F) MAX
 20(68F)....NEUGEBAUER

UPPER LEVEL LOW WILL MOVE OVER SFO DURING THE DAY WITH RAIN THRU
 THE MORNING AND ISOL TSRA THRU THE AFTERNOON.

 Sending mcode: 16435 to: (0089.0014.0087.0000) (0089.0024.0087.0000) (0090.0014.0087.0000)
(0087.4095.0087.0000)
Address index: 0 Count: 5 Empty: 12 fill: 53
Address index: 1 Count: 4 Empty: 12 fill: 53
Address index: 2 Count: 10 Empty: 96 fill: 53
Address index: 3 Count: 6 Empty: 52 fill: 53
 Received ACK on Seq: 2482 from (0089.0024.0087.0183)
 Ack matched Address (0089.0024.0087), now check the sequence #
 Ack matched Sequence also - all done..
 Received ACK on Seq: 2482 from (0089.0014.0087.0109)
 Ack matched Address (0089.0014.0087), now check the sequence #
 Ack matched Sequence also - all done..
 Received ACK on Seq: 2482 from (0087.0005.0087.0013)

ETMS System Design Document
Version 5.8

7-55

 Ack matched Address (0087.4095.0087), now check the sequence #
 Ack matched Sequence also - all done..
 Received ACK on Seq: 2482 from (0087.0047.0087.0007)
 Ack matched Address (0087.4095.0087), now check the sequence #
 ACK Did not match ...
 Received ACK on Seq: 2482 from (0090.0014.0087.0298)
 Ack matched Address (0090.0014.0087), now check the sequence #
 Ack matched Sequence also - all done..

Messages. The original Arinc message is augmented with a printer sequence number. The
Arinc.server sequence number (generated by Arinc.driver) and the Arinc.sprinter sequence
number are both sent to all specified Arinc.sprinter modules.

Statistical Reports. An S0 and S2-S9 cause the following statistical report to be received:
RCVD Data Message From (6.7.38.3.0) To (6.8.9.102.0)
STATS ** NADIN HUBSITE PRINTER QUEUE MANAGER STATISTICS - VERSION 2.07 **
 Elapsed time: 176 18:41:57 Current: 05/06 09:23:53

Adaptation file: /etms5/nadin/config/arinc.sprinter.nadin

 Reconfigured 01/19 22:23:44 by (06.07.09.18)

 Net Open Attempts: 24 Net Open Successes: 15

 Test polls to myself: 44199 Rcvd test polls to myself: 44194
 # times node.sw reopened since no poll reply received 5
 Last poll sent 165.50 seconds ago - No poll in progress
 Msgs from NET: 293471 Bytes from NET: 118880608
 Messages received from Nadin: 24441
 Last NADIN message received at 05/06 09:19:20

 Messages Sent to all recipients: 24444
 Port Filled: 833 Other NET_send errors: 2

 Total acknowledgments rcvd: 98014 No Match: 685
 Total Messages Returned: 126144

[0] (87.4095.88.00) Count: 2 Empty: 101 fill: 91
 Msgs rcvd/Queued: 15194 Send Attempts: 131300 Msgs returned: 97415
 Acks Rcd & Matched: 14975 Acks Rcd & Not Matched: 0

[1] (89.31.88.00) Count: 2 Empty: 101 fill: 91
 Msgs rcvd/Queued: 15194 Send Attempts: 15265 Msgs returned: 52
 Acks Rcd & Matched: 15176 Acks Rcd & Not Matched: 0

[2] (89.32.88.00) Count: 2 Empty: 101 fill: 91
 Msgs rcvd/Queued: 15194 Send Attempts: 15290 Msgs returned: 0
 Acks Rcd & Matched: 15176 Acks Rcd & Not Matched: 0

[3] (90.14.88.00) Count: 4 Empty: 91 fill: 91
 Msgs rcvd/Queued: 15194 Send Attempts: 45400 Msgs returned: 28441
 Acks Rcd & Matched: 15067 Acks Rcd & Not Matched: 0

ETMS System Design Document
Version 5.8

7-56

Stats s0 and s2-s9 all return this same report. Stats s1 sends a test message to all rprinters.
An S1 request results in an acknowledgment that a test message was sent to all
Arinc.rprinters.

Processing

The processing phase of Arinc.sprinter is an infinite loop of receiving Arinc messages and
shipping them to all specified Arinc.rprinter modules. The processing phase then uses timers
to retry sending each message until it is acknowledged by the recipient. Refer to the
PROCESS routine for more details.

Arinc.sprinter receives unsolicited messages from Arinc via the Arinc.server's auto-distribute
function. Arinc.sprinter must acknowledge these messages or Arinc.server will continue to
re-send each message. Arinc.sprinter inserts each message into its queues for each specified
Arinc.rprinter and transmits the messages to each Arinc.rprinter. The Arinc.rprinter must
acknowledge the message or Arinc.sprinter will continue to re-send each message.

Timed Events. Arinc.sprinter will attempt to reconnect to node.sw once a minute.
Arinc.sprinter will close and open up another log file once an hour. Arinc.sprinter will resend
queued entries every two minutes. Arinc.sprinter will poll itself every five minutes (message
code is 16437). If the poll is not received back from node.sw within 5 minutes, the
connection to node.sw is closed and then reopened. This checks the integrity of the node.sw
connection.

Error Conditions and Handling

Arinc.sprinter errors are logged into the hourly log file. Whenever Arinc.sprinter starts or
stops, it sends a notification to all specified Arinc.rprinter modules which is then printed.

7.7.1.1 Sprinter Routines and Procedures

IN_USE_BIT_CLEAR

The queue handler uses a bit mask to mark a record as being in use. This routine clears the in
use flag for a particular queue slot.

IN_USE_BIT_SET

The queue handler uses a bit mask to mark a record as being in use. This routine sets the in
use flag for a particular queue slot.

IN_USE_BIT_QUERY

ETMS System Design Document
Version 5.8

7-57

The queue handler uses a bit mask to mark a record as being in use. This routine checks the
in use flag for a particular queue slot.

READ_ENTRY

As part of the processing to read a queued entry, this routine positions a queue file to a
specific location and reads the specified entry.

WRITE_ENTRY

As part of the processing to write an entry to the queue, this routine positions a queue file to
a specific location and then writes the specified entry.

DUMP_Q

A diagnostic routine that displays the contents of all queues. This is not used operationally.

DELETE_OLDEST_ENTRY

This routine overwrites the oldest queue entry with a filler record and updates all pointers and
counters accordingly.

ADD_TO_ARINC_QUEUE

This routine updates all counters and pointers and ultimately calls write_entry to add an entry
onto a specified queue. If the queue is already filled, this routine calls delete_oldest_entry to
make room.

ARINC_QUEUE_AND_SEND

This routine takes a received message (or an internally generated notice) and places it onto
every queue (by calling add_to_arinc_queue). This routine then calls the resend_queues
routine to ship all queued messages. This routine also assigns the printer sequence number.

AUTO_DISTRIBUTE_ACK_RECEIVED

This procedure extracts the sequence number from the received acknowledgment and, by
comparing the site and class from the message, attempts to match the acknowledgment to a
queued entry. There is a special test for wildcards, i.e., if the queue wildcarded the node
identifier, any node with its site and class is considered a match. The specified queue is then
searched (the in use bit must be set) looking to match the sequence number. If the sequence
number matches, the entry is deleted. Any match or mismatch is logged into the hourly log
files.

ETMS System Design Document
Version 5.8

7-58

GET_WORD_LOCAL

This routine performs the get_word function on 1024 byte words.

OPEN_LOG_FILE

This routine closes any existing hourly log file and reopens a new one with the name:

</etms5>/etms_data/arinc/print.yymmddhhmmss

or

</etms5>/etms_data/nadin/print.yymmddhhmmss

The yymmddhhmmss is year/month/day/hour/minute/second timestamp.

CHECK_TIMER

This routine checks all timers.

Arinc.sprinter closes and open up another log file once an hour. Arinc.sprinter resends queued
entries every two minutes. Arinc.sprinter polls itself every five minutes (message code is
16437). If the poll is not received back from node.sw within 5 minutes, the connection to
node.sw is closed and then reopened. This checks the integrity of the node.sw connection.

CREATE_ARINC_QUEUE

This routine creates the queue files. The files are named:
/etms_data/arinc/sprintq_file_xx or /etms_data/nadin/sprintq_file_xx
where xx is a serial number. The in use bit mask is then cleared.

INSERT_TEXT_INTO_QUEUE

This procedure frames notifications internally generated by Arinc.sprinter and then calls
arinc_queue_and_send to send the messages to all Arinc.rprinter modules.

INITIALIZE

This procedure initializes the Arinc.sprinter module. It performs the following steps:

(1) calls get_etms_path and terminates if it fails

(2) checks if the first argument is either arinc or nadin; if not specified, it defaults
to arinc

(3) creates the directory structure and then creates its trace file either

ETMS System Design Document
Version 5.8

7-59

</etms5>/arinc/trace/arinc.sprinter

or

</etms5>/nadin/trace/nadin.sprinter

(4) calls open_log_file to create the hourly log file

(5) sets all timers

(6) clears all queues in use masks

(7) reads the adaptation file and creates all queue files

(8) connects to the ETMS message switching system

(9) queues a hub site queue manager restarted message to all Arinc.rprinters

NET_OPEN_UP

Opens the connection to the ETMS message switching system. If unsuccessful, it sets a one-
minute timer to try again.

INCREMENT_RETURN_COUNT

Increments the counter that indicates that a message was returned to sender for the specified
queue.

NET_POLL

This procedure looks for messages from the ETMS message switching system. All returned
messages are counted (INCREMENT_RETURN_COUNT), and all other messages are handed
off to (NET_PROCESS_MESSAGE).

NET_PROCESS_MESSAGE

This procedure routes received messages to the appropriate processing routine. S0, S2-S9 are
given to process_sx. S1 is given to process_s1. A polling received message (from itself)
clears the outstanding poll flag. A message receive acknowledgment (Arinc.rprinter received
the message) calls auto_distribute_ack_received. A message from Arinc.server, which
requires an acknowledgment (Arinc message) causes an acknowledgment to be sent and
arinc_queue_and_send to be called. A reconfigure command voids all queues, loads the new
adaptation file, causes new queue files to be created, and causes a HUB Site Queue Manager
Reconfigured message to be posted to all new Arinc.rprinter modules.

ETMS System Design Document
Version 5.8

7-60

NET_SEND

Sends a specified message to node.sw. If any error occurs, except for port filled, the
connection is broken and a new connection is made to noder.sw.

PROCESS

Performs an infinite loop by checking timers, looking for messages and waiting for something
to happen.

PROCESS_SX

Formats a statistical report of the current state of Arinc.sprinter in response to a net.mail S0
or S2-S9 message.

PROCESS_S1

Sends a test message to all Arinc.rprinters, as well as an acknowledgment, back to the
requestor.

ADDRESS_GET_VALUE

Extracts an address element from a text string presumed to be (xxx.yyy.zzz), i.e. returns xxx,
yyy or zzz.

READ_AUTO_DISTRIBUTE_ADDRESSES

Reads the addresses from the adaptation file. The end of the file or the word END or end
marks the end of the list. There can be a maximum of 16 addresses.

READ_ADAPT_FILE

Opens the adaptation file specified in argument 1 to the module or the default:

</etms5>/arinc/config/arinc.sprinter.config

or

</etms5>/nadin/config/nadin.sprinter.config

and then calls READ_AUTO_DISTRIBUTE_ADDRESSES to read the addresses.

READ_ADAPT_FILE

ETMS System Design Document
Version 5.8

7-61

This routine sets the default adaptation file name and then looks for an adaptation filename
from argument two to the module. If the argument exists it is used, otherwise use the
defaults.

This routine then opens the file, any file open error causes program termination error, calls
read_auto_distribute_addresses, and closes the file.

MAILBOX_SEND_FAILURE

This routine attempts to send a queued message to the ETMS message switching system. If
the entry is timed out, it is removed from the queue and a not sent flag is returned.

If the connection to node.sw does not exist, a not sent flag is returned.

This routine begins its actual work (not above background steps) by updating the queued
entry's last send attempt time and then tries to send the message to the ETMS. If the send is
unsuccessful for any reason a not sent flag is returned; otherwise, a sent flag is returned.

RESEND_QUEUES

This routine resets the sending timer and then checks each recipient's queue.

The in use bit is checked for each entry. If it is set all the following operations are performed:

(1) Read the entry from the queue file.

(2) If the sequence number is the deleted mask, skip the record.

(3) If the entry was last resent within two minutes, skip it.

(4) Call mailbox_send_failure to resend the entry.

SEND_POLL

Rearms the event counter, sets a sent flag, and sends a poll addressed to this program
(module) to node.sw.

CLEANUP_HANDLER

This routine performs an orderly module termination sequence. This procedure is called
whenever a signal is received by the process whether internally or externally generated.

MAIN

ETMS System Design Document
Version 5.8

7-62

This is the entry point for this module. It utilizes ETMS API calls to arm event handlers and
obtain module arguments.

The module then calls initialize to do the obvious and then process to do the primary function.
If somehow process returns (it performs an infinite loop), the API call pgm_exit is made to
terminate the module.

7.7.1.2 Source Code Organization

Arinc.sprinter uses the standard ETMS API suite. Otherwise the module consists of one
program named arinc.sprinter5.c.

7.7.1.3 Building Instructions
#***
#***
ETMS VERSION 5 OPEN SYSTEMS
ARINC SUITE
#***
#***

#--
Directories for this specific software
#--
ROOT_DIR = ..
SHARED_DIR = $(ROOT_DIR)/shared
ARINC_DIR = ../arinc.osc

#--
Where to find PasANSI stuff
#--
PASANSI_SRC_DIR = $(ROOT_DIR)/PasANSI
PASANSI_INC_DIR = $(ROOT_DIR)/PasANSI

#--
Where to find API stuff
#--
API_ROOT_DIR = $(ROOT_DIR)/api
API_SRC_DIR = $(API_ROOT_DIR)/sources/api_openlib
API_INC_DIR = $(API_SRC_DIR)
API_LIB_DIR = $(API_SRC_DIR)
API_LIB = opensys
API_LIB_FULLNAME = $(API_LIB_DIR)/lib$(API_LIB).a

#--
Compiler flags and API lib
#--
CFLAGS = -O -I$(ARINC_DIR) -I$(SHARED_DIR) -
I$(API_INC_DIR) -I$(PASANSI_INC_DIR)
LIBS = -L$(API_LIB_DIR) -l$(API_LIB)

ETMS System Design Document
Version 5.8

7-63

#--
Dependent include files
#--
INCLUDES = $(SHARED_DIR)/etms.lib.h \

$(PASANSI_INC_DIR)/PasANSI.h

#--
Dependent object files
#--
OBJECTS = $(SHARED_DIR)/etms.lib.o
\

$(PASANSI_SRC_DIR)/PasFile.o
#--
What to build
#--
all: arinc.qprinter arinc.rprinter arinc.sprinter

#--
How to build it
#--
#---------------------------------

arinc.qprinter: $(OBJECTS) \
 $(ARINC_DIR)/arinc.qprinter.o \

$(API_LIB_FULLNAME)
@echo '[linking $@]'
cc -o $(ARINC_DIR)/arinc.qprinter \

 $(ARINC_DIR)/arinc.qprinter.o \
$(OBJECTS) \
$(LIBS)

$(ARINC_DIR)/arinc.qprinter.o: $(ARINC_DIR)/arinc.qprinter.c $(INCLUDES)
@echo '[compiling $@]'
$(CC) $(CFLAGS) -D ARINC -c $(ARINC_DIR)/arinc.qprinter.c

#---------------------------------

arinc.rprinter: $(OBJECTS) \
 $(ARINC_DIR)/arinc.rprinter5.o \

$(API_LIB_FULLNAME)
@echo '[linking $@]'
cc -o $(ARINC_DIR)/arinc.rprinter5 \

 $(ARINC_DIR)/arinc.rprinter5.o \
$(OBJECTS) \
$(LIBS)

$(ARINC_DIR)/arinc.rprinter5.o: $(ARINC_DIR)/arinc.rprinter5.c $(INCLUDES)
@echo '[compiling $@]'
$(CC) $(CFLAGS) -D ARINC -c $(ARINC_DIR)/arinc.rprinter5.c

#---------------------------------

ETMS System Design Document
Version 5.8

7-64

arinc.sprinter: $(OBJECTS) \
 $(ARINC_DIR)/arinc.sprinter5.o \

 $(API_LIB_FULLNAME)
@echo '[linking $@]'
cc -o $(ARINC_DIR)/arinc.sprinter5 \

 $(ARINC_DIR)/arinc.sprinter5.o \
$(OBJECTS) \
$(LIBS)

$(ARINC_DIR)/arinc.sprinter5.o: $(ARINC_DIR)/arinc.sprinter5.c $(INCLUDES)
@echo '[compiling $@]'
$(CC) $(CFLAGS) -D ARINC -c $(ARINC_DIR)/arinc.sprinter5.c

7.7.1.4 Constants
#define CT_OUTPUT_MESSAGE_CODE 16435
#define CT_OUTPUT_MESSAGE_ACCEPT_CODE 16436
#define POLLING_MESSAGE_CODE 16437
#define MINUTES_BETWEEN_POLLS 5

#define MAX_AUTO_DISTRIBUTE 16
#define TWO_MINUTES 120
#define FIVE_MINUTES 300
#define NUMBER_QUEUE_ENTRIES 128 /* IF THIS IS CHANGED, CHANGE THE DEFINITIONS OF
 BIT_MASK_128_T which uses six 32 bit integers to
 map which records are in use */
#define MESSAGE_TIMEOUT_INTERVAL (3600*6*4) /* 6 hours */
#define MAILBOX_CLOSE_TIMEOUT (6*60) /* 6 minutes */
#define NET_EC 0
#define TIME_EC 1
#define MAX_EC 2
#define WAIT_ON_OPEN (1*60) /* wait 1 minutes between retrying the open */
#define LF ((char)10)
#define _LF { (char)10, 0 }
#define CR ((char)13)
#define _CR { (char)13, 0 }
#define ERROR_STREAM stdout
#define NET_NIL (-1)

7.7.1.5 Sprinter Data Structures
typedef char char3_t[3];
typedef char char4_t[4];
typedef char char6_t[6];
typedef char char8_t[8];
typedef char char10_t[10];
typedef char char32_t[32];
typedef char char128_t[128];
typedef char char256_t[256];

ETMS System Design Document
Version 5.8

7-65

typedef char char200_t[200];
typedef char char512_t[512];
typedef char char1024_t[1024];
typedef char char6000_t[6000];
typedef char char8192_t[8192];
typedef char char8100_t[8100];
typedef short int3_t[3];

typedef
struct control_format_t
{
 INT32 seq;
 CALTIME time;
 short data_size;
 char6000_t data;
} control_format_t;

typedef
struct queue_rec_t
{
 INT32 timeout, last_sent, seq;
 control_format_t msg;
} queue_rec_t;

typedef
struct queue_control_t
{
 INT32 fill, empty, count;
 control_format_t msg;
} queue_control_t;

7.7.2 Rprinter Module

Purpose

The Rprinter module or Arinc.rprinter receives messages from the Arinc.sprinter module and
inserts the messages into a shared memory region that Arinc.qprinter can then use to place
the messages onto the printer. Arinc.rprinter also logs all messages into hourly and individual
log files.

Design Issue: Environment

Arinc.rprinter is compliant with ETMS version 5 network addressing and open systems. It
has no hardware requirements.

Execution Control

ETMS System Design Document
Version 5.8

7-66

Initialization. The module initializes by calling the initialize procedure, which is described
below in detail. The important parts of initialization is to determine if it is running in Arinc or
Nadin mode (third argument). The initialize procedure then creates the two shared regions,
one for all received messages, the other for non SI type messages. The initialization phase is
completed by creating the log file and connecting to ETMS message switching.

Termination. The termination of Arinc.rprinter is handled by a routine called
cleanup_handler. Cleanup_handler is called by the operating system when signals are received;
these signals can be internally generated or externally generated. The cleanup_handler routine
unmaps the shared regions, closes the ETMS connection, and closes out the log files.

Input

Arguments. Arinc.rprinter requires three arguments in its command line. The first argument
must be the name of the shared memory region that receives only SI type messages. The
second argument is the name of the shared memory region that contains all received
messages. The third argument is a word that is either arinc or nadin (the Arinc or Nadin
flag). If neither word is specified, Arinc.rprinter defaults to being in the Arinc mode.

Messages From Arinc.sprinter. The Arinc.sprinter must have the address of Arinc.rprinter
(and Nadin.sprinter must have the address of Nadin.rprinter) in its configuration file in the
auto-configure section. Otherwise no Arinc (or Nadin) messages will be printed. All
messages from Arinc.sprinter must have a message code of 16435 and the first four data
bytes are presumed to contain the Arinc message sequence number and the subsequent four
having the Arinc.sprinter assigned printer sequence number. Arinc.rprinter then sends the
same message back to Arinc.sprinter with a message code of 16436 as an acknowledgment.

There is a two-step filtering of Arinc messages in Arinc.rprinter. All received messages are
determined to be SI type or not. All messages go into one shared region (second argument to
this module). Only non SI type messages go into the non SI shared memory region (first
argument to this module). The determination of an SI message is:

(1) Skip over two lines of text (line feed marks end of each line).

(2) If the next word is `****' it might be the second part of a multiple-part
message. The subsequent word must be PART and the following line must be
ACID DEP DEPT EDCT CTA, where ACID is 2-7 characters with first
character being a letter, where DEP is 3-4 characters, and DEPT/EDCT/CTA
must each be a letter followed by 4 digits. If all these rules apply, this is
considered to be an SI.

(3) If the first word after skipping the two lines is SI, it is considered to be an SI.

(4) If the first word after skipping the two lines is FLIGHTS, it is considered to be
an SI (FLIGHTS REVISED BY SI).

ETMS System Design Document
Version 5.8

7-67

(5) If the first three words after skipping the two lines are:
 CONTROLLED FLIGHTS FOR
 CANCELLED FLIGHTS FOR
 OPEN SLOTS FOR
 the message is considered to be an SI.

Statistics Requests. Arinc.rprinter responds to Net.mail S0 and S1 requests. Net.mail S2-
S9 requests are responded to with the same unsupported command error. Refer to the
detailed descriptions of process_s0, process_s1 and process_sx for further details.

Output

Shared Region. The primary output of Arinc.rprinter is messages to the two shared regions.
Arinc.rprinter determines if the message is an SI type and does not write it to one region but
it writes all messages to the other shared region.

Log file handling. Arinc.rprinter writes out hourly log files which contain all received
messages. The file is open, appended to and then closed for each message. The file is named
either

/etms_data/arinc/print.yymmddhhmms

or

/etms_data/nadin/print.yymmddhhmmss

where yymmddhhmmss is the two-digit year, month, day, hour, minute, second.

Each input message is logged into its own file named

/etms_data/arinc/ddhhmm.saddress.yyddmmhhmmss.seq#

or

/etms_data/nadin/ddhhmm.saddress.yyddmmhhmmss.seq#.

Where ddhhmm is the embedded data-time group in the message, saddress is the source
Arinc or Nadin address, yyddmmhhmmss is the same as the above file, and seq# is the printer
sequence number.

Statistical Reports. A statistics report is returned to those users who send a net.mail S0-S9
to the Arinc.rprinter module. An S0 returns statistics, an S1 is an acknowledgment that a test
message was inserted into the shared regions, and an S2-S9 return the information that S2-S9
are not supported by Arinc.rprinter.

Processing

ETMS System Design Document
Version 5.8

7-68

The processing phase is one large infinite loop; the loop is gated by event counters on timers
and messages from the ETMS. On each loop cycle, all timers are checked and all messages
from ETMS are resolved. Refer to the Process routine for more details.

Arinc.rprinter receives unsolicited messages from Arinc.sprinter via the Arinc.sprinter
auto-distribute function. The address of this Arinc.rprinter (either specific or wildcard) must
be specified within the Arinc.sprinter adaptation file. Arinc.rprinter must acknowledge each
message from Arinc.sprinter or Arinc.sprinter will continue to re-send each message.

Timed Events. Arinc.rprinter strobes a counter in each shared region every 9.5 seconds.
Arinc.rprinter sends itself a poll through node.sw on a timed basis (every 5 minutes). If a
response is not received by the next polling interval, the connection to node.sw is closed and
re-opened. Arinc.rprinter opens a new log file each hour.

Shared Region. Arinc.rprinter maintains two shared memory queues implemented as disk
files. The Arinc.qprinter modules read these shared regions and prints the contents. There is a
limited amount of handshaking between Arinc.rprinter and Arinc.qprinter.

Error Conditions and Handling

Exceptional error handling causes entries to be made into the hourly log file. Fatal signals to
the module cause an orderly shutdown by having the signal handler call the routine named
cleanup_handler within Arinc.rprinter.

7.7.2.1 Rprinter Routines and Procedures

Add_to_region

This procedure moves a message into the shared region(s). If it is not an SI, it goes into both;
an SI only goes into the one all inclusive region. The region is considered to be circular so
that any old characters remaining in the regions are over-written. Any non-printing character
other than tab/cr/lf is removed from the message as it is being moved into the shared region.
The write count is incremented accordingly, a flag of 0xFF is appended to the region (to
mark the end of the region), and a completed message counter is incremented (this is a
pseudo event counter).

Get_word_local

This procedure extracts a 1024 byte word from the given buffer. Otherwise it is identical to
the universal get_word.

ETMS System Design Document
Version 5.8

7-69

Get_source

This procedure extracts either the Arinc or Nadin source address and date time group from a
message.

The rules for Arinc are to skip over the priority (typically QU) and then look for lf followed
by a period. The next word is the source address only if it is seven or eight bytes with an
upper case letter as the first character. If the format does not match, seven xs are returned.
The next word must be the date time group; if this is not six characters with the first
character being a digit, 999999 is returned.

The rules for Nadin are to skip over the first linefeed. The next word must be the date time
group, if this is not six characters with the first character being a digit 999999 is returned.

The next word is the source address only if it is seven or eight bytes with an upper case letter
as the first character. If the format does not match, seven xs are returned.

Is_second_part

This routine looks to see if the message is the second or subsequent part of a long message.
This is part of the is this an SI logic.

If the first word is not PART, return false (not second part). Skip over the rest of the line.
The next line must be ACID DepAir DEPT EDCT CTA which results in the following rules:

(1) first word: two to seven characters, first one is an upper-case letter

(2) second word: three to four characters, first one is a upper-case letter

(3) third word: five characters, first is upper-case letter and second and last are
digits

(4) fourth word: five characters, first is upper-case letter and second and last are
digits

(5) fifth: five characters, first is upper-case letter and second and last are digits

If all the above rules match, this is a multi-part message (considered to be an SI).

Check_for_SI

Skip over two lines (two linefeeds). If the next word is exactly **** call is_second_part,
which returns if it is an SI or not.

Otherwise the rules are:

ETMS System Design Document
Version 5.8

7-70

(1) single word = SI -> is an SI.

(2) single word = FLIGHTS -> is an SI.

(3) three words = CONTROLLED FLIGHTS FOR -> is an SI.

(4) three words = CANCELLED FLIGHTS FOR -> is an SI.

(5) three words = OPEN SLOTS FOR -> is an SI.

If none of the above rules match, it is not an SI.

Format_header

This procedure formats a standard header that will be used in the trace files. This header
contains the timestamp and the sequence numbers of the messages.

Cavort_with_valid_message

This routine processes a message from the Arinc.sprinter. This routine extracts the Arinc and
the printer sequence number, sender's address, and the date time group from the message.
This routine then calls check_for_si to determine if it is an SI message. When the above
paperwork is done, this procedure formats the standard header by calling format_header,
removes non-printing ASCII characters from the buffer and then calls write_to_sio to write
the data into the log files and the shared regions. The message cannot exceed 8000
characters, but the code segments each message into 8000-byte blocks.

Format_init_header

This routine, called as part of the initialization process, places a module initialized message
into the shared regions.

Initialize

This routine performs the module initialization. The following steps are performed by calling
auxiliary procedures:

(1) Get_etms_path to determine the file system layout

(2) EVT_create to create the event handlers

(3) Determining if this module is in Arinc or Nadin mode (pgm_get_arg)

(4) Creates the output directories, either /etms_data/arinc or /etms_data/nadin

ETMS System Design Document
Version 5.8

7-71

(5) Obtaining the names of the two shared regions and creating them
(Make_region_owner)

(6) Open_log_file to create the hourly log file

(7) Net_open_up to connect to the ETMS messages switching system

Make_region_owner

This procedure creates a shared memory mapped file. This procedure then initializes the
control information within the mapped memory to allow other processes (Arinc.qprinter) to
synchronize their shared memory read operations with the write operations of this process.

Net_open_up

This procedure connects Arinc.rprinter to the ETMS message switching system. If there
already is a connection, this routine closes it prior to attempting to open a new one. The
connection class is either Arincp or Nadinp. If the internal call to the ETMS API net_open
fails (and no connection is made), this routine sets a one-minute timer event counter.

Net_poll

This procedure looks for messages from the ETMS message switching system. If there is
currently no connection, procedure net_open_up is called.

Otherwise this procedure is one infinite loop which is terminated by an error on a message
read or the fact that there are no more messages (ETMS API net_get_msg does the actual
message reading). Any read error (except no more data) causes the connection to be closed
and reopened.

All returned messages are ignored. All other messages are passed onto net_process_message
for resolution.

A statistics request from net.mail of S0 causes process_s0 to be called. A statistics request
from net.mail of S1 causes process_s1 to be called. All other net.mail statistics requests (S2-
S9) cause process_sx to be called.

A message sent by arinc.rprinter to itself clears the polling flag. If the flag is not cleared, this
module will disconnect and re-connect to the ETMS message switching system.

A message from the Arinc.sprinter module with the guranteed delivery message code (16435)
causes an immediate echo of the message with the acknowledgment flag (16436) set. The
received message is then passed onto cavort_with_valid_message for resolution.
All other message codes are totally ignored.

ETMS System Design Document
Version 5.8

7-72

Net_send

This procedure is a universal transmitter. All messages from this module to anywhere in the
ETMS utilize this procedure. Any sending errors (outside of port filled/no room in channel)
will cause this procedure to disconnect and re-connect to the ETMS message switching
system.

Open_log_file

This procedure creates the hourly log file. It then sets a one-hour timer to allow the next file
to be created on the hour.

Reopen_log_file

This routine will close and re-open the existing hourly log file in append mode. This allows the
UNIX tail and cat functions to operate properly on some UNIX platforms.

Process

This is the main processing loop of Arinc.rprinter. This routine is an infinite loop. The loop
performs the following operations:

(1) Increments a heartbeat counter in each shared region on a scheduled basis
(approximately every 10 seconds). This allows Arinc.qprinter modules to sense
that they are not properly connected to the shared region.

(2) Sends a poll to itself on a scheduled basis. If the timer expires and there has
been no receipt of the previous poll, this routine disconnects and re-connects to
the ETMS message switching system.

(3) Checks to see if it is time for another hourly file to be created

(4) Re-arms the quarter-second timer

(5) Looks for messages from the ETMS message switching system

Dump_region_info

This routine formats the specified shared region's control information into a supplied buffer.
This is intended to be part of the statistical reports that users can request.

Process_S0

This procedure supplies statistical information about Arinc.rprinter operation to users in
response to a net.mail S0 request.

ETMS System Design Document
Version 5.8

7-73

Process_S1

This procedure inserts a test message into both shared regions which should be read by all
connected Arinc.qprinters. This is performed in response to a net.mail S1 request. The
requesting net.mail receives an acknowledgment of the request.

Process_sx

This procedure sends a request unsupported message to any user who sends this module a
net.mail S2 to S9 request.

Send_poll

This procedure sends a message addressed to itself to the ETMS message switching system.
If the message is not received by the next polling interval, the connection to the ETMS is
deemed non-functional and is terminated (and re-opened).

Write_to_sio

This routine performs the main message output in this module. It writes the message to either
or both shared regions, depending upon whether it is an SI or not. It creates a file for each
message, writes the message, and closes the file. This routine also writes the message to the
hourly log file, closes it, and then reopens it. (Refer to reopen_log_file for details.)

Cleanup_handler

This procedure is called at module termination to deallocate all resources. All open files are
closed, the shared memory files are unmapped, and the connection to ETMS is severed.

MAIN

This is the entry point for this module. It utilizes ETMS API calls to arm event handlers and
obtain module arguments.

The module then calls initialize to start, and then process to perform the primary function. If
process returns (it performs an infinite loop), the API call pgm_exit is made to terminate the
module.

7.7.2.2 Source Code Organization

Arinc.rprinter uses the standard ETMS API suite. Otherwise the module consists of one
program named arinc.sprinter5.c with a shared-region-insert filename arinc_q_region.h.

7.7.2.3 Building Instructions

ETMS System Design Document
Version 5.8

7-74

Refer to the Arinc.sprinter5.c section for the Makefile.

7.7.2.4 Constants
 /* EVENT COUNTERS */
#define NET_EC 0
#define TIME_EC 1
#define NUM_EC 2

#define NET_NIL (-1)
#define STX ((char)2)
#define _STX { (char)2, 0 }
#define CR ((char)13)
#define _CR { (char)13, 0 }
#define LF ((char)10)
#define _LF { (char)10, 0 }
#define TEN_SECONDS (10*4) /* 10 SECONDS - USED FOR MBX_$TIMED_OPENS */
#define ONE_MINUTE (1*60*4) /* WAIT 1 MINUTE BETWEEN RETRYING THE OPEN */

#define CT_OUTPUT_MESSAGE_CODE 16435
#define CT_OUTPUT_MESSAGE_ACCEPT_CODE 16436
#define POLLING_MESSAGE_CODE 16437
#define MINUTES_BETWEEN_POLLS 5

 /* allocate 16 * 64K bytes of buffer space */
#define REGION_BUFFER_SIZE 0xfffff

7.7.2.5 Rprinter Data Structures
typedef char char2_t[2];
typedef char char3_t[3];
typedef char char4_t[4];
typedef char char5_t[5];
typedef char char6_t[6];
typedef char char7_t[7];
typedef char char8_t[8];
typedef char char9_t[9];
typedef char char10_t[10];
typedef char char32_t[32];
typedef char char256_t[256];
typedef char char1024_t[1024];
typedef char char6000_t[6000];
typedef char char8100_t[8100];
typedef char char8192_t[8192];

typedef
struct control_format_t
{
 INT32 seq;
 CALTIME time;
 short data_size;

ETMS System Design Document
Version 5.8

7-75

 char6000_t data;
} control_format_t;

typedef
 struct region_t
 {
 INT32 heartbeat; /* incremented every 10 seconds - if no increment -> clients should reconnect */
 INT32 rprinter_pid; /* process ID of rprinter - qprinter reopens if it changes*/
 INT32 event_counter; /* incremented whenever an entry is written to the region - performs no process
signalling !!! */
 INT32 write_count; /* total bytes written to the queue */
 INT32 read_count [8]; /* how many bytes read from this channel */
 INT32 fill; /* next byte to place data */
 INT32 empty [8]; /* qprinter programs utilize this */
 short qprinter_pid [8]; /* != 0 means someone connected at some time, they may not have
disconnected though... */
 short valid; /* =0 region is o.k., <> 0 then don't use */
 char buffer[REGION_BUFFER_SIZE + 1];
 } region_t;

typedef region_t *region_ptr_t;

7.7.3 Qprinter Module

Purpose

The Qprinter module or Arinc.qprinter is responsible for placing the data from the Arinc (or
Nadin) network onto a piece of paper (or re-directed to another application).

Execution Control

Initialization. The initialization phase is concerned with reading in the module arguments,
connecting to the shared memory region, and configuring the serial port.

Termination. The termination phase is concerned with the orderly shutdown of the
application so that all allocated resources are properly released.

Input

Arguments. Arinc.qprinter accepts four module arguments. The first argument is the name
of the shared memory region. The shared memory region must exist on the same node that is
running both Arinc.rprinter and Arinc.qprinter. The second argument is the serial port
number. This must later be converted to the name of the printer device port. The third
argument is used as an index. This index signals whether this module will update global
parameters in the shared region or not. A positive value of 1-8 means to update the control
information for a specific control set. A value of zero means to not update the control

ETMS System Design Document
Version 5.8

7-76

information. The fourth argument is the speed of the serial port in bps; suggested values are
4800, 9600, 19200, or 38400.

Output

Printouts. The output from this module is text to a serial port or to the standard output
stream.

Shared Region. The shared region is updated only if the third module argument indicates the
specific control table to update.

Statistical Reports. This module does not interact with the ETMS message switching
system. Most status messages are written to the serial port.

Trace File. This module logs all module heartbeat failures and subsequent shared memory
region disconnects into a trace file that is always less than 32,767 bytes (the file is erased
whenever it reaches this limit). The name of the trace file is /etms_data/arinc/qprinter_log.PID
or /etms_data/nadin/qprinter_log.PID, where PID is the UNIX program identifier.

Processing

Processing is one loop of waiting for characters to appear in the shared region and then
transferring them to the serial port.

Timed Events. The only timed event in use is to check whether the shared region heartbeat
is being incremented. If it is not, Arinc.qprinter closes and re-opens the shared memory
region.

Shared Region. All input to this module is via the shared memory region. This region is a
circular byte buffer. Arinc.qprinter moves characters, not messages, from this buffer
directly to the serial port. The shared region also has a suite of control fields, which includes
a region valid flag, a heartbeat counter, a next byte to fill pointer, and a set of eight control
fields, which include the process identifier and the next byte to read.

Error Conditions and Handling

This module re-establishes communications with the shared memory region if the in-use flag
is cleared or a heartbeat counter is not updated in a timely fashion.

Most other errors cause module termination.

7.7.3.1 Qprinter Routines and Procedures

Log_error

ETMS System Design Document
Version 5.8

7-77

This routine logs all heartbeat timeouts into the trace file. The file is opened, written and then
closed on each event.

Get_from_region

This routine looks for characters from the shared memory region. It returns a negative byte
count if the region is not mapped or is marked as being invalid.

This routine moves at most 8000 bytes from the shared region. Non-printing characters are
not moved (carriage return, linefeed, tab are considered printable characters only in this
context). The move from the shared region is completed when 8000 bytes are removed or a
flag byte of 0xFF is found or the next byte to write pointer is reached.

The shared memory region control area is updated only if the third module argument is in the
range of one to eight.

Make_region_user

This procedure connects the shared memory region maintained by Arinc.rprinter to
Arinc.qprinter. The first step performed is to write that a connection attempt is being made
to the printer. If the region is currently connected, disconnect the region.

If the connection has failed or is marked as invalid, write an error to the printer, wait a
discrete interval, and then return failure to the calling module.

On a successful connection, write a successful connection message to the log file and to the
printer and then update the shared memory region and the environmental variables.

Initialize

This routine configures the Arinc.qprinter module. The first step that is performed is to read
the shared memory region name from the first argument. The shared memory name is
scanned and if the text Nadin appears, set the Nadin flag.

The next step that is performed is to create the log file name as
/etms_data/arinc/qprinter_log.PID or /etms_data/nadin/qprinter_log.PID. This routine then
calls open_sio to set up the serial port.

The Arinc.qprinter then goes into a gated loop trying to connect to the Arinc.rprinter shared
memory region (make_region_user).

The third argument to the program is then used to determine if the shared region should be
updated. A value of 0 to 7 means to update the appropriate shared memory control area. A
negative sign in front of the value means to start printing from the beginning of the shared
memory region. Otherwise printing will start on the next addition to the shared memory
region.

ETMS System Design Document
Version 5.8

7-78

Open_sio

This routine defaults the print device to /dev/tty00. The second module argument is then
checked for the range of 1 to 3. The last character of /dev/tty00 is then overlayed; if the
argument is 2, the device name is /dev/tty02. A negative sign on the second program
argument means echo all output to the standard output stream.

The serial port is then opened using standard POSIX calls, and program argument 4 is
evaluated for line speed. If the line speed is not valid (see the above input section) it is
defaulted to 9600 bps. The speed of the serial port is then set, a printer is started, and a
printer is starting message is output to the printer (write_to_sio).

Process

This procedure performs the main programming loop. It creates the time event counter and
then begins an infinite loop. If the shared region heartbeat is not incremented in a timely
fashion, make_region_owner is called to disconnect and re-connect to the Arinc.rprinter
shared memory region.

The inifinite loop is gated by a 1/4 second event counter. A call to Get_from_region is made
on each 1/4 second interval. A negative byte count causes a loop to make_region_user with
its error message to the printer until a connection is re-established to the Arinc.rprinter shared
region. A positive byte count is passed to write_to_sio to output the data.

Write_done

This routine is used at module termination to write a module termination message to the
printer.

Write_to_sio

If the echo to standard output flag is set, this module uses the UNIX write call to write to the
standard output.

Otherwise this routine uses the UNIX write call to write to the serial port.

Cleanup_handler

This routine shuts down the Arinc.qprinter module. It calls the write_done procedure,
disconnects from the shared memory region, closes the serial port, and exits.

ETMS System Design Document
Version 5.8

7-79

Main

The main routine uses ETMS API calls to set a signal handler and obtain the original module
arguments. It then calls the INITIALIZE and the PROCESS routines.

7.7.3.2 Source Code Organization

This module is composed of one source code program.

7.7.3.3 Building Instructions

Refer to the Arinc.sprinter module for the Makefile.

7.7.3.4 Constants

Refer to the Arinc.sprinter module for the constants used by this module.

7.7.3.5 Qprinter Data Structures

Refer to the Arinc.sprinter module for the common data structures used by these modules.

